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a b s t r a c t

A Bayesian system reliability estimation methodology for multiple overlapping uncertain data sets
within complex multi-state on-demand and continuous life metric systems is presented in this paper.
Data sets are overlapping if they are drawn from the same process at the same time, with reliability data
from sensors attached to a system at different functional and physical levels being a prime example.
Treating overlapping data as non-overlapping loses or incorrectly infers information on system reliability.
Methodologies for system reliability analysis of certain overlapping data sets have previously been
proposed. These methodologies, and the approach presented in this paper, are able to incorporate
overlapping uncertain evidence from systems with a detailed understanding of the system logic repre-
sented using fault-trees, reliability block diagrams or equivalent representations. The method presented
here builds on approaches that have already been developed by the authors that allow incorporation of
exact or certain data sets.

& 2015 Elsevier Ltd. All rights reserved.

Introduction

Many system reliability analysis methodologies focus on sys-
tem failure logic (such as that represented in reliability block dia-
grams or fault-trees) to express system failure probability in terms
of subordinate component failure probabilities. Such methodolo-
gies are explained in virtually all texts on systems reliability: for
example Hoyland and Rausand [1], Hiromitsu and Henley [2] and
the Nuclear Regulatory Committee (NRC) Probability Risk Assess-
ment Guide [3]. These techniques promote system reliability as a
function of component reliabilities, which in turn direct focus to
reliability testing and data collection at component level. Com-
ponent data are then used to develop component level reliability
estimates, with which system level reliability values are calcu-
lated. This approach automatically precludes useful system and
sub-system data, which is referred to here as higher level data as it
appears ‘higher’ in many visualization methodologies such as
fault trees.

Generally, systems can be of two types: ‘demand-based’ or
‘continuously operating’ (noting that mixed types are also possi-
ble). Demand-based or on-demand systems are subjected to dis-
crete demands or trials and respond by operating (or existing)

within certain discrete states. The simplest of on-demand systems
are ‘binary-state’ systems, where components are either in the
‘functional’ or ‘failed’ states. ‘Multi-state’ systems involve compo-
nents that can be classified by order of severity in various degra-
ded states ranging from ‘functional’ to ‘failed.’ Methods for relia-
bility analysis of such systems can be found in the literature (see
for example [4] and [5]). Systems based on continuous life metrics
are those whose failure probability is an explicit function of an
independent life variable such as time or distance.

Jackson and Mosleh [6–9] developed Bayesian methodologies
for incorporating higher level data in on-demand systems and
continuous life metric systems. A system often involves multiple
sensors (sensors are broadly defined as monitoring points through
data gathering devices; human, machine, or otherwise). This
means that reliability data sets are often overlapping in nature.
Sets of overlapping data meet the following criteria:

1. Simultaneity – the data sets are drawn from observations or
demands that occur at the same time; and

2. Correspondence – the data sets result from the same system or
process.

Initially, only approximate Bayesian methodologies were
developed for Bayesian analysis of higher-level data [10–13]. These
methods have been generalized further, particularly for con-
tinuous multi-state systems in [14,15] that place bounds on
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parametermoments, noting that the underlyhing mathematics
remains particularly onerous. Multiple methodologies that can
incorporate higher-level non-overlapping data have since been
developed and are discussed in detail below [16–18]. Jackson and
Mosleh discuss the error that is introduced when incorrectly
analyzing overlapping data by constraining it to be considered as
non-overlapping [6–9]. Graves et al. [19] proposed a method that
incorporates overlapping data for multi-state on-demand systems.
The methodology considers each demand in isolation (i.e. sensor
states for each demand must be known), but cannot incorporate
data that summarizes multiple demands on the system. The
methodology proposed by Jackson and Mosleh [9] is completely
generalized and able to consider multiple demands for multi-state
systems.

This paper develops fully Bayesian methodologies for incor-
porating uncertain overlapping higher level data using techniques
discussed above. In the case of on-demand systems, uncertain data
manifests itself in terms of the uncertainty in number of observed
failures from demands. For continuously operating systems, it is
manifested in terms of the uncertainty in the time at which failure
is detected. The latter scenario for continuously operating systems,
a likelihood function that is not only computationally simpler than
that proposed by Jackson and Mosleh in [7], but correctly repli-
cates reality as all detection times have uncertainty expressed as
the accuracy of the timing devices. This allows utility in applica-
tions where system reliability is periodically checked over specific
time intervals (such as the case of maintenance schedules) or at
specific points of operations (such as the case of sequential

Nomenclature

a reference number of a particular combination of an
on-demand system’s state vectors

αx
b xth parameter of the Dirichlet distribution used as a

conjugate prior distribution of state probabilities (for
on-demand systems)

~αb bth compont’s vector of it Dirchlet conjugate prior
distribution of state probabilities

b reference number of a particular component within
a system

E evidence set
Ê observed evidence set
(t) unit or Heaviside step function
i reference number of a particular sensor within

a system
j reference number of a particular component type

within a system
kS xð Þ
i number of times the ith sensor detects the xth func-

tional state (for on-demand systems)
~k
S
i vector of possible numbers of times the ith sensor

detects the xth functional state (for on-demand
systems)

l reference number of a particular state vector of an on-
demand system

L Ejθ� �
likelihood function – the likelihood of observing evi-
dence set E given parameter set θ

m number of sensors within a system
n number of component types within a system
n0 number of components within a system
p xð Þ
b probability of the bth component being in the xth (for

on-demand systems)
pS xð Þ
i probability of the ith sensor detecting the xth func-

tional state (for on-demand systems) which is
expressed as function that includes subordinate
component state probabilities as inputs

~pb bth component’s vector of all state probabilities – p xð Þ
b

(for on-demand systems)
p set of all component’s state probabilities for an on-

demand system
π0 θ� � prior distribution of the parameter set θ
π1 θjE� �

posterior distribution of the parameter set θ given
evidence set E

r number of demands an on-demand system is
subjected to

rSi number of demands the ith sensor observes (for on-
demand systems)

ϕS
i ~x
� �

structure function of the ith sensor for a particular
component state vector, ~x

tSi time at which the ith sensor detects failure (for time-
based continuous systems)

~t
S

vector of all sensor failure detection times (for time-
based continuous systems)

t̂
S
i estimated time at which the ith sensor detects failure

(for time-based continuous systems)
ts
�

vector of all estimated sensor failure detection times
(for time-based continuous systems)

ΔtSi uncertainty interval of the time at which the ith sen-
sor detects failure (for time-based continuous
systems)

Δ~t
S

vector of all sensor uncertainty intervals (for time-
based continuous systems)

~t
� S
i set of failure detection times of sensors inferentially

subordinate to the ith sensor (for time-based con-
tinuous systems)

~θb vector of bth component’s reliability parameters
θ set of all components’ reliability parameters
θ � S
i set of parameter sets of component inferentially sub-

ordinate to the ith sensor (for time-based continuous
systems)

vl number of occurrences of the lth state vector for an
on-demand system subject to r demands

~v vector containing a combination of r state vectors (for
on-demand systems)

vlð Þa number of occurrences of the lth state vector in the
ath combination of r state vectors (for on-demand
systems)

~va vector containing the ath combination of r state vec-
tors (for on-demand systems)

vE set of state vector combinations ( ~v) that imply the
evidence set, E (for on-demand systems)

x state of a particular component (for on-demand
systems)

xb state of the bth component (for on-demand systems)
~x state vector of a system containing all component

states of an on-demand system
xbð Þl state of the bth component of the lth state vector of an

on-demand system
~x l lth state vector of an on-demand system
z number of allowable states for a system (for on-

demand systems)
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