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Abstract

The purpose of this paper is to provide an oscillation theorem that can be applied to half-linear differential
equations with time-varying coefficients. A parametric curve by the coefficients is focused in order to obtain
our theorem. This parametric curve is a generalization of the curve given by the characteristic equation of
the second-order linear differential equation with constant coefficients. The obtained theorem is proved by
transforming the half-linear differential equation to a standard polar coordinates system and using phase
plane analysis carefully.
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1. Introduction

This paper is concerned with an oscillation theorem for the second-order nonlinear differential equation
with a damping term, (

Φp(x′)
)′
+ a(t)Φp(x′) + b(t)Φp(x) = 0, (1)

wherea andb are locally integrable functions on[0,∞) andΦp is a real-valued function defined by

Φp(z) =


|z|p−2z if z , 0,

0 if z = 0.

with a real numberp > 1. Equation (1) has the trivial solution(x, x′) ≡ (0, 0). Whenp = 2, equation (1)
becomes the linear homogeneous differential equation with variable coefficients,

x′′ + a(t)x′ + b(t)x = 0. (2)

It is well-known that all solutions of (1) are unique for given initial conditions and continuable in the future
as well as those of (2) are (see, for example, [2, 5]). In addition to this property, many commonalities are
seen in the asymptotic behavior of solutions of (1) and (2), such as oscillation and stability. For example,
see [1, 3, 7, 8, 10, 13, 14, 15, 16, 19, 20, 21]. Equation (1) is one of half-linear differential equations. About
half-linear differential equations, refer to the monograph [4] and the references therein.

Since all solutions of (1) are continuable in the future, they can be classified into two groups as follows:
a nontrivial solutionx of (1) is said to beoscillatory if there exists a sequence{tn} tending to∞ such that
x(tn) = 0; otherwise, it is said to benonoscillatory.

Let u = a(t) andv = b(t). Then, the point(a(t), b(t)) is considered to move in the(u, v)-plane. Let us
call that trajectory aparametric curve. We divide the first quadrant of the(u, v)-plane into two regions by
the curvev = (u/p)p:

R1 =
{
(u, v) : u ≥ 0 and 0 ≤ v ≤ (u/p)p};

R2 =
{
(u, v) : u ≥ 0 and v > (u/p)p}.
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