Accepted Manuscript

Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity

Hongliang Liu, Zhisu Liu, Qizhen Xiao

PII:	S0893-9659(17)30384-1
DOI:	https://doi.org/10.1016/j.aml.2017.12.015
Reference:	AML 5401
To appear in:	Applied Mathematics Letters

Received date: 11 October 2017
Revised date: 19 December 2017
Accepted date: 19 December 2017

Please cite this article as: H. Liu, Z. Liu, Q. Xiao, Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity, Appl. Math. Lett. (2017), https://doi.org/10.1016/j.aml.2017.12.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity *

Hongliang Liu, Zhisu Liu, ${ }^{\dagger}$ Qizhen Xiao
School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, China

Abstract

In this paper, we study the existence of ground state solutions of nonlinear elliptic equation with logarithmic nonlinearity by the Linking theorem and logarithmic Sobolev inequality. Our results are quite different from those in the case of polynomial nonlinearity.

Keywords: Fourth-order elliptic equation, Logarithmic nonlinearity, Ground state solution

MSC2010: 35J35, 35J66

1 Introduction and main result

In this paper, we study the following fourth-order nonlinear equations with logarithmic nonlinearity

$$
\begin{cases}\Delta^{2} u+c \Delta u=u \log |u| & \text { in } \Omega \tag{1.1}\\ u=\Delta u=0 & \text { on } \partial \Omega\end{cases}
$$

where Δ^{2} denotes the biharmonic operator, Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega$. Let λ_{1} be the principle eigenvalue of $-\Delta$ in $H_{0}^{1}(\Omega)$ and assume the parameter $c<\lambda_{1}$.

In recent years, great attention has been paid on the study of the fourth-order semilinear elliptic problem. For instance, in [6] the authors considered the problem with the nonlinearity $b\left[(u+1)^{+}-1\right]$ and pointed out that such kind of nonlinearity furnishes a model to study traveling waves in a suspension bridge. After that, lots of papers are devoted to the problem with more general nonlinearity. In $[15,18]$ the authors studied the existence of nontrivial solutions and sign-changing solutions when f is superlinear or sublinear at infinity. When f is asymptotically linear at infinity, three nontrivial solutions were obtained in [10] by applying the Morse theory. See also [1] for the existence of single nontrivial solution. For other interesting results of biharmonic equations, we refer to $[7,8]$ and the reference therein.

[^0]
https://daneshyari.com/en/article/8053978

Download Persian Version:
https://daneshyari.com/article/8053978

Daneshyari.com

[^0]: *Research is supported by the NSFC (Grant Nos. 11701267 and 11626128), and the Hunan Provincial Natural Science Foundation (Grant No. 2017JJ3265), and the Scientific Research Fund of Hunan Provincial Education Department (Nos 17C1362 and 17C1364).
 ${ }^{\dagger}$ Corresponding Author. Email addresses: liuzhisu183@sina.com; math_lhliang@163.com (H.Liu).

