

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Global strong solutions to the 3D full compressible Navier–Stokes system with vacuum in a bounded domain

Jishan Fan^a, Fucai Li^{b,*}

- ^a Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, PR China
- ^b Department of Mathematics, Nanjing University, Nanjing 210093, PR China

ARTICLE INFO

ABSTRACT

Article history:

Received 22 September 2017 Received in revised form 4 November

Accepted 4 November 2017 Available online 13 November 2017

Keuwords:

Full compressible Navier-Stokes system

Vacuum

Bounded domain

Global strong solution

In this short paper we establish the global well-posedness of strong solutions to the 3D full compressible Navier-Stokes system with vacuum in a bounded domain $\Omega \subset \mathbb{R}^3$ by the bootstrap argument provided that the viscosity coefficients λ and μ satisfy that $7\lambda > 9\mu$ and the initial data ρ_0 and u_0 satisfy that $\|\rho_0\|_{L^{\infty}(\Omega)}$ and $\|\rho_0|u_0|^5\|_{L^1(\Omega)}$ are sufficiently small.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this short paper, we consider the following initial and boundary problem to the 3D full compressible Navier–Stokes system in a bounded domain $\Omega \subset \mathbb{R}^3$:

$$\partial_t \rho + \operatorname{div}(\rho u) = 0 \text{ on } \Omega \times (0, \infty),$$
 (1.1)

$$\partial_t(\rho u) + \operatorname{div}(\rho u \otimes u) - \mu \Delta u - (\lambda + \mu) \nabla \operatorname{div} u + \nabla p = 0 \quad \text{on} \quad \Omega \times (0, \infty), \tag{1.2}$$

$$C_V\{\partial_t(\rho\theta) + \operatorname{div}(\rho u\theta)\} - \Delta\theta + p\operatorname{div}u = \frac{\mu}{2}|\nabla u + \nabla u^t|^2 + \lambda(\operatorname{div}u)^2 \text{ on } \Omega \times (0, \infty),$$
(1.3)

$$u = 0, \ \frac{\partial \theta}{\partial n} = 0 \ \text{on} \ \partial \Omega \times (0, \infty),$$
 (1.4)

$$(\rho, \rho u, \rho \theta)(\cdot, 0) = (\rho_0, \rho_0 u_0, \rho_0 \theta_0) \text{ in } \Omega. \tag{1.5}$$

Here the unknowns ρ , u, and θ denote the density, velocity and temperature of the fluid, respectively. The pressure $p := R\rho\theta$ and the internal energy $e := C_V\theta$ with positive constants R and C_V . λ and μ are two

E-mail addresses: fanjishan@njfu.edu.cn (J. Fan), fli@nju.edu.cn (F. Li).

Corresponding author.

viscosity constants satisfying $\mu > 0$ and $\lambda + \frac{2}{3}\mu \ge 0$. n is the unit outward normal vector to the smooth boundary $\partial \Omega$ of Ω .

If the initial density ρ_0 has a positive lower bound, the global existence of small smooth solutions to the problem (1.1)–(1.5) was obtained in [1,2] three decades ago.

If the initial data may contain vacuum, Cho and Kim [3] proved the local well-posedness of strong solutions to the problem (1.1)–(1.5) under the compatibility conditions:

$$-\mu \Delta u_0 - (\lambda + \mu) \nabla \operatorname{div} u_0 + R \nabla (\rho_0 \theta_0) = \sqrt{\rho_0} g_1, \tag{1.6}$$

$$\Delta\theta_0 + \frac{\mu}{2} |\nabla u_0 + \nabla u_0^t|^2 + \lambda (\operatorname{div} u_0)^2 = \sqrt{\rho_0} g_2, \tag{1.7}$$

with $g_1, g_2 \in L^2(\Omega)$.

Recently, Huang and Li [4] prove that the global well-posedness of strong solutions to the full compressible Navier–Stokes equations in the whole space \mathbb{R}^3 with smooth initial data which are of small energy but possibly large oscillations where the initial density is allowed to vanish, see also [5]. However, the methods developed in [4,5] cannot be applied directly to bounded domain case.

The aim of this paper is to prove that, although the initial density may contain vacuum, the problem (1.1)–(1.5) still has a unique global strong solution for small initial data. Our results read as

Theorem 1.1. Let $0 \le \rho_0 \in W^{1,6}(\Omega)$, $u_0 \in H_0^1(\Omega) \cap H^2(\Omega)$, $0 \le \theta_0 \in H^2(\Omega)$ with $\frac{\partial \theta_0}{\partial n} = 0$ on $\partial \Omega$ and (1.6), (1.7) hold true. If

$$7\lambda > 9\mu \text{ and } \|\rho_0\|_{L^{\infty}} + \|\rho_0|u_0|^5\|_{L^1}$$
 (1.8)

is sufficient small, then the problem (1.1)–(1.5) has a unique global-in-time strong solution.

Remark 1.1. It is interesting to note that the initial temperature θ_0 need not be small in our results.

Remark 1.2. It is possible to establish a similar result for the full compressible magnetohydrodynamical system.

Remark 1.3. When $\Omega := \mathbb{R}^3$ and consider the isentropic Navier–Stokes system, a similar result can be proved when $\|\rho_0\|_{L^p}$ is small for some large p by the method developed here and a blow-up criterion

$$\rho \in L^p(\mathbb{R}^3 \times (0, T)) \tag{1.9}$$

proved in [6].

Remark 1.4. A similar result holds true when the boundary condition $\frac{\partial \theta}{\partial n} = 0$ on $\partial \Omega$ is replaced by $\theta = 0$ on $\partial \Omega$.

To prove Theorem 1.1, we will use the following abstract bootstrap argument or continuity argument ([7], Page 20).

Lemma 1.2 ([7]). Let T > 0. Assume that two statements C(t) and H(t) with $t \in [0, T]$ satisfy the following conditions:

- (a) If H(t) holds for some $t \in [0,T]$, then C(t) holds for the same t;
- (b) If C(t) holds for some $t_0 \in [0,T]$, then H(t) holds for t in a neighborhood of t_0 ;
- (c) If C(t) holds for $t_m \in [0,T]$ and $t_m \to t$, then C(t) holds;
- (d) C(t) holds for at least one $t_1 \in [0, T]$.

Then C(t) holds for all $t \in [0, T]$.

Download English Version:

https://daneshyari.com/en/article/8054043

Download Persian Version:

https://daneshyari.com/article/8054043

<u>Daneshyari.com</u>