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kinds of energy decay rates of the string-beam system with different locations of the
frictional damping. On one hand, if the frictional damping is only actuated in the
beam part, the system lacks exponential decay. Specifically, the optimal polynomial
decay rate t~1 is obtained under smooth initial conditions. On the other hand, if
the frictional damping is only effective in the string part, the exponential decay of

f:gi;:ﬁ:lc behavior energy is presented. Some numerical simulations are given to support these results.
Exponential decay © 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

The elastic multi-link structures have many applications in engineering, such as aircrafts, satellite antennas
and so on (see [1]). One kind of such structures consists of elastic strings and beams. The large-time behavior
of this kind of structure with different damping has been studied a lot in recent years. For instance, Nicaise
and Valein in [2] showed the exponential stability of wave equation on 1-d networks with delay terms in
the nodal damping. Zhang and Zuazua in [3] obtained the optimal polynomial decay rate for a wave-heat
system based on a detailed spectral analysis. Han and Xu in [4] proved the exponential decay of the energy
for star-shaped networks of elastic beams. More related references can be found in [5-7] and the references
therein. To some extent, the large-time behavior of the multi-link systems is dependent on the locations
of the damping in the systems. Rivera et al. in [8] studied the transmission problems for elastic strings
with localized frictional and Kelvin—Voigt dissipation. They found that the energy decay rate of this system
depends on the location of the Kelvin—Voigt damping. Ammari et al. in [9,10] and [11] considered the nodal
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feedback stabilization for networks of strings and beams. They obtained that the decay rate of a closed-loop
system depends on the positions of the nodal feedback controllers. However, there are still very few literatures
on such a study. This motivates us to study the explicit energy rates of a coupled string-beam system with
different internalized frictional damping.

We consider the following PDEs’ system composed of a string and a beam coupled at the interface point,
while the frictional damping is actuated either in the domain of string part or beam part. More precisely,
the system can be described as follows:

Y (2, 1) =Ygz (2, t) + oy (z,t) =0, 0 <z <1, £ >0,

Ot (2, ) + Opgaa(x,t) + ¥0:(2,8) =0, 1 <2 <2, t >0,

y(0,t) =0, 0(2,t) = 0,.(2,t) =0, 0,,(1,t) =0, t >0, (1)
y(lvt) = Q(I,t), yx(lvt) + oxwx(lat) =0,t>0,

y(I,O) = yO(I)ﬂ yt(x,O) = yl(x)v e(xﬂo) = 90(93)3 Qt(:C,O) = 91(33)7

where y(z,t) and 0(z,t) are the displacement of the string and beam at time ¢ and position x, respectively.
«, v are constants satisfying ay = 0 and « 4+ v > 0. The energy functional for the system above is given as
E(t) = f01[|y,;\2 + yel® + 02| + 0¢)*]da, and its derivative E'(t) = —a fol |y 2 — ’yfol 10,°da: < 0. So the
energy of the system above is decreasing. It should be noted that if «, -y are both positive (that is to say, the
frictional damping is effective in the global domain), it is easy to check that the solution to the system decays
to zero exponentially by the energy multiplier or frequency domain method. However, it is unknown whether
the exponential decay still holds if either « or +y is null. In this work, we give a detailed spectral analysis for
this system and focus on presenting a complete analysis for the large-time behavior of the solution to system
(1). We conclude that if the frictional damping is effective in the domain of the beam part, the system lacks
exponential decay, while if it is effective in the domain of the string part, the exponential decay can be
obtained. Note that this result is consistent with those regarding the nodal damping on string-beam system
given in [9]. However, the authors in that paper did not discuss the optimality of polynomial decay under
smooth initial conditions, which will be further discussed in our work.

The optimality of polynomial decay rate is a tough issue to discuss, which is also the main contribution
of this paper. In general, it can be determined by the relationship between the real and imaginary parts of
the spectra of the corresponding system operator, in other words, the speed of the spectra approaching the
imaginary axis. However, it is difficult to get explicit expressions of the spectra due to the couplings between
the string and beam in the system. In this work, using some special asymptotic techniques, we obtain an
explicit expression of the spectra. Based on this expression, together with the resolvent estimation along the
imaginary axis, it is enough to obtain the optimal polynomial decay rate for the system.

The paper is organized as follows. In Section 2, the system is described in an appropriate Hilbert space
setting and the well-posedness is proved. Section 3 is devoted to discussing the large-time behavior for the
case « = 0, v > 0. We show that the system lacks exponential decay. Specifically, the optimal polynomial
decay rate is obtained with smooth initial conditions. In Section 4, we obtain the exponential decay of the
system for the case a > 0, v = 0, similarly. In Section 5, some numerical examples are given.

2. Well-posedness

This section is devoted to showing the well-posedness of system (1). For convenience, set u(x,t) =
y(1 —a,t), w(x,t) =0(x+1,t), 0 <z <1, t > 0. Then system (1) can be transformed as follows.

Ut (T, 1) — Upy (2, 1) + aue(x,t) =0, 0 < <1, t >0,
W (2, 1) + Wegae (2, 1) + ywi(z,t) =0, 0 <z < 1, t >0,
u(1,t) =0, w(l,t) = wex(1,t) =0, wey(0,¢) =0, t >0, (2)

w(0,1) = w(0, 1), 1 (0,1) = Wwaaa (0,8), £ > 0,
u(z,0) = yo(l — ), w(x,0) =y1 (1 — x), w(x,0) = Op(x + 1), we(x,0) =61 (z+ 1).
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