Accepted Manuscript

Positive solutions for superdiffusive mixed problems

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš

PII: S0893-9659(17)30297-5
DOI: https://doi.org/10.1016/j.aml.2017.09.017
Reference: AML 5346

To appear in: Applied Mathematics Letters
Received date: 8 September 2017
Revised date: 30 September 2017
Accepted date: 30 September 2017

Please cite this article as: N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Positive solutions for superdiffusive mixed problems, Appl. Math. Lett. (2017), https://doi.org/10.1016/j.aml.2017.09.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

POSITIVE SOLUTIONS FOR SUPERDIFFUSIVE MIXED PROBLEMS

NIKOLAOS S. PAPAGEORGIOU, VICENŢIU D. RĂDULESCU, AND DUŠAN D. REPOVŠ

Abstract

We study a semilinear parametric elliptic equation with superdiffusive reaction and mixed boundary conditions. Using variational methods, together with suitable truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^{N}$ be a bounded domain with a C^{2}-boundary $\partial \Omega$ and let $\Sigma_{1}, \Sigma_{2} \subseteq \partial \Omega$ be two ($N-1$)-dimensional C^{2}-submanifolds of $\partial \Omega$ such that $\partial \Omega=\Sigma_{1} \cup \Sigma_{2}, \Sigma_{1} \cap \Sigma_{2}=\emptyset$, $\left|\Sigma_{1}\right|_{N-1} \in\left(0,|\partial \Omega|_{N-1}\right)$, and $\overline{\Sigma_{1}} \cap \bar{\Sigma}_{2}=\Gamma$. Here, $|\cdot| N-1$ denotes the ($N-1$)-dimensional Hausdorff (surface) measure and $\Gamma \subset \partial \Omega$ is a ($N-2$)-dimensional C^{2}-submanifold of $\partial \Omega$.

In this paper, we study the following logistic-type elliptic problem:

$$
\left\{\begin{array}{l}
-\Delta u(z)=\lambda u(z)^{q-1}-f(z, u(z)) \quad \text { in } \Omega, \\
\left.u\right|_{\Sigma_{1}}=0,\left.\frac{\partial u}{\partial n}\right|_{\Sigma_{2}}=0, u>0, \lambda>0 .
\end{array}\right\}
$$

When $f(z, x)=x^{r-1}$ with $r \in\left(2,2^{*}\right)$, we get the classical logistic equation, which is important in biological models (see Gurtin \& Mac Camy [8]). Depending on the value of $q>1$, we distinguish three cases: (i) $1<q<2$ (subdiffusive logistic equation); (ii) $2=q<r$ (equidiffusive logistic equation); (iii) $2<q<r$ (superdiffusive logistic equation). In this paper, we deal with the third situation (superdiffusive case), which exhibits bifurcation-type phenomena for large values of the parameter $\lambda>0$.

Let $E_{\Sigma_{1}}=\left\{u \in H^{1}(\Omega):\left.u\right|_{\Sigma_{1}}=0\right\}$. This space is defined as the closure of $C_{c}^{1}\left(\Omega \cup \Sigma_{1}\right)$ with respect to the $H^{1}(\Omega)$-norm. Since $\left|\Sigma_{1}\right|_{N-1}>0$, we know that for the space $E_{\Sigma_{1}}$, the Poincaré inequality holds (see Gasinski \& Papageorgiou [7, Problem 1.139, p. 58]). So, $E_{\Sigma_{1}}$ is a Hilbert space equipped with the norm $\|u\|=\|D u\|_{2}$. Let $\mathcal{A} \in \mathcal{L}\left(E_{\Sigma_{1}}, E_{\Sigma_{1}}^{*}\right)$ be defined by $\langle A(u), h\rangle=\int_{\Omega}(D u, D h)_{\mathbb{R}^{N}} d z$ for all $u, h \in E_{\Sigma_{1}}$. We denote by N_{f} the Nemitsky map associated with f, that is, $N_{f}(u)(\cdot)=f(\cdot, u(\cdot))$ for all $u \in E_{\Sigma_{1}}$.

The hypotheses on the perturbation term $f(z, x)$ are the following:
$H(f): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for almost all $z \in \Omega$, $f(z, 0)=0, f(z, x) \geqslant 0$ for all $x>0$, and
(i) $f(z, x) \leqslant a(z)\left(1+x^{r-1}\right)$ for almost all $z \in \Omega$ and all $x \geqslant 0$, with $a \in L^{\infty}(\Omega)$, $2<q<r<2^{*}$;
(ii) $\lim _{x \rightarrow+\infty} \frac{f(z, x)}{x^{q-1}}=+\infty$ uniformly for almost all $z \in \Omega$, and the mapping $x \mapsto \frac{f(z, x)}{x}$ is nondecreasing on $(0,+\infty)$ for almost all $z \in \Omega$;
(iii) $0 \leqslant \liminf _{x \rightarrow 0^{+}} \frac{f(z, x)}{x} \leqslant \limsup _{x \rightarrow 0^{+}} \frac{f(z, x)}{x} \leqslant \hat{\eta}$ uniformly for almost all $z \in \Omega$;
(iv) for every $\rho>0$, there exists $\hat{\xi}_{\rho}>0$ such that for almost all $z \in \Omega$ the function $x \mapsto \hat{\xi}_{\rho} x-f(z, x)$ is nondecreasing on $[0, \rho]$.

Key words and phrases. Mixed boundary condition, superdiffusive reaction, positive solutions, bifurcation-type result, truncations.

2010 AMS Subject Classification. Primary: 35J20. Secondary: 35J25, 35J60.

https://daneshyari.com/en/article/8054144

Download Persian Version:
https://daneshyari.com/article/8054144

Daneshyari.com

