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a b s t r a c t

Singular source terms represented by the Dirac delta function are found in
various applications modeling natural problems. Solutions to differential equations
perturbed by such singular source terms have jump discontinuity and their high
order numerical approximations suffer from the Gibbs phenomenon. We use the
Schwartz duality to approximate the Dirac delta function existent in fractional
differential equations. The singular source term is approximated by the fractional
derivative of the Heaviside function. We provide a Chebyshev spectral collocation
method for solving the fractional advection equation with the singular source term
and show that the Schwartz duality yields the consistent formulation resulting
in vanishing Gibbs phenomenon. The numerical results show that the proposed
approximation of the Dirac delta function is efficient and accurate, particularly for
linear problems.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in solving numerically the following fractional advection equation with the singular
source term ⎧⎨⎩ut + aDα

x u(x, t) = δ(x − 1 − a), x ∈ [a, a + 2], t > 0,
u(x, 0) = f(x), x ∈ [a, a + 2],
u(a, t) = g(t), t > 0,

(1.1)

where δ(x) is the Dirac delta function and aDα
x is the fractional derivative of order α. With the definition

of fractional integral of order α (α > 0)

aD−α
x v(x) = 1

Γ (α)

∫ x

a

(x − ξ)α−1v(ξ)dξ, x > a, (1.2)
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the fractional derivative can be defined as a natural extension of (1.2). The Riemann–Liouville fractional
derivative is

aDα
x v(x) = 1

Γ (n − α)
dn

dxn

∫ x

a

(x − ξ)n−α−1v(ξ)dξ, x > a, α ∈ (n − 1, n), (1.3)

and the Caputo fractional derivative, an alternative closely related to the Riemann–Liouville fractional
derivative, is

C
a Dα

x v(x) = 1
Γ (n − α)

∫ x

a

(x − ξ)n−α−1 dnv(ξ)
dξn

dξ, x > a, α ∈ (n − 1, n). (1.4)

Since the Caputo derivative is more convenient to specify suitable initial and boundary conditions of
fractional differential equations [1], we focus on the Caputo fractional derivative. Various numerical methods
have been developed for solving fractional partial differential equations (FPDEs), including finite difference
methods [2,3], spectral methods [4–8] and discontinuous Galerkin methods [9]. The main objective of this
paper is to provide a consistent Chebyshev spectral collocation method for solving the fractional advection
equation with the singular source term which is approximated by the Schwartz duality on the collocation
points.

The paper is organized as follows. In Section 2, we derive the Chebyshev fractional differentiation matrix.
The fractional Schwartz duality for the approximation of the Dirac delta function is proposed in Section 3. In
Section 4, we present the analytical solution of our model problem followed by some numerical experiments
in Section 5. In Section 6, a concluding remark is provided.

2. Chebyshev spectral collocation method for fractional derivative

Here we derive the Chebyshev pseudo-spectral fractional differentiation matrix based on the three term
recurrence relation. Let Tj(x) be the jth order Chebyshev polynomial of the first kind defined on [−1, 1],
satisfying the three-term recurrence relation with T0(x) = 1 and T1(x) = x

Tj+1(x) = 2xTj(x) − Tj−1(x), j ≥ 1. (2.5)

A variation of the above relation is also given by the derivatives as below

2Tj(x) = 1
j + 1

d

dx
Tj+1(x) − 1

j − 1
d

dx
Tj−1(x), j ≥ 2. (2.6)

For 0 < α < 1, the fractional derivative of the Chebyshev polynomial of degree j is given by

T
(α)
j := −1Dα

x Tj(x) = 1
Γ (1 − α)

∫ x

−1
(x − s)−α dTj(s)

ds
ds. (2.7)

In order to derive the recurrence relation of T
(α)
j , we need the following lemma.

Lemma 2.1. Let Kj = 1
Γ(1−α)

∫ x

−1(x − s)−αTj(s)ds, then the following equality is satisfied for j ≥ 3

Kj = 2jx

j + 1 − α
Kj−1 − j(j − 3 + α)

(j − 2)(j + 1 − α)Kj−2 + 2(−1)j+1(x + 1)1−α

(j + 1 − α)(j − 2)Γ (1 − α) . (2.8)

Proof. We can prove the lemma by applying the recurrence (2.5) and (2.6). That is,

Kj = 1
Γ (1 − α)

∫ x

−1
(x − s)−α[2sTj−1(s) − Tj−2(s)]ds

= 2xKj−1 − Kj−2 − 2
Γ (1 − α)

∫ x

−1
(x − s)1−αTj−1(s)ds. (2.9)
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