

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Weak solutions for the stationary Schrödinger equation and its application[♠]

Lei Qiao

School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou 450046, China

ARTICLE INFO

Article history: Received 12 April 2016 Received in revised form 19 July 2016 Accepted 19 July 2016 Available online 27 July 2016

Keywords: Carleman's formula Stationary Schrödinger equation Integral representation

ABSTRACT

In this paper, we prove Carleman's formula for weak solutions of the stationary Schrödinger equation in a cylinder. As an application of it, the integral representation of solutions of the stationary Schrödinger equation is also obtained.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and main results

We introduce a system of spherical coordinates (r, Θ) , $\Theta = (\theta_1, \theta_2, \dots, \theta_n)$, in \mathbf{R}^n $(n \geq 2)$ which are related to Cartesian coordinates $(x_1, x_2, \dots, \theta_{n-1}, y)$ by $y = r \cos \theta_1$. For positive functions h_1 and h_2 , we say that $h_1 \lesssim h_2$ if $h_1 \leq ch_2$ for some constant c > 0. If $h_1 \lesssim h_2$ and $h_2 \lesssim h_1$, then we say that $h_1 \approx h_2$.

Let Δ_n be the Laplace operator and Ω be a bounded domain in \mathbf{R}^{n-1} with smooth boundary $\partial\Omega$. Consider the Dirichlet problem $(\Delta_{n-1} + \lambda)\varphi = 0$ on Ω and $\varphi = 0$ on $\partial\Omega$ (see [1, p. 41]). We denote the least positive eigenvalue of this boundary value problem by λ and the normalized positive eigenfunction corresponding to λ by φ , $\int_{\Omega} \varphi^2(X) d\Omega = 1$, where $X \in \Omega$ and $d\Omega$ is the (n-1)-dimensional volume element.

The set $\Omega \times \mathbf{R} = \{P = (X, y) \in \mathbf{R}^n; X \in \Omega, y \in \mathbf{R}\}$ in \mathbf{R}^n is simply denoted by $T_n(\Omega)$. We call it a cylinder (see [2]). In the following, we denote the sets $\Omega \times I$ and $\partial \Omega \times I$ with an interval I on \mathbf{R} by $T_n(\Omega; I)$ and $S_n(\Omega; I)$ respectively. Hence $S_n(\Omega; \mathbf{R})$ denoted simply by $S_n(\Omega)$ is $\partial T_n(\Omega)$.

Let \mathscr{A}_{Ω} denote the class of nonnegative radial potentials a(P) (i.e. $0 \le a(P) = a(r)$ for $P = (X, y) = (r, \Theta) \in T_n(\Omega)$) such that $a \in L^b_{loc}(T_n(\Omega))$ with some b > n/2 if $n \ge 4$ and with b = 2 if n = 2 or n = 3.

[↑] This work was supported by the National Natural Science Foundation of China (Grant Nos. 11301140, U1304102). E-mail address: lei.quiao@gmail.com.

For the identical operator I and the potential $a(P) \in \mathscr{A}_{\Omega}$, we define the stationary Schrödinger operator by $SSE_a = -\Delta_n + a(P)I$, where SSE_a can be extended in the usual way from the space $C_0^{\infty}(T_n(\Omega))$ to an essentially self-adjoint operator on $L^2(T_n(\Omega))$ (see [3, Ch. 11] for more details). Furthermore SSE_a has a Green–Sch function $\mathcal{G}_{\Omega}^a(P,Q)$ (associated with the stationary Schrödinger operator SSE_a). Here $\mathcal{G}_{\Omega}^a(P,Q)$ is positive on $T_n(\Omega)$ and its inner normal derivative $\partial \mathcal{G}_{\Omega}^a(P,Q)/\partial n_Q$ is non-negative, where $\partial/\partial n_Q$ denotes the differentiation at Q along the inward normal into $T_n(\Omega)$. We write $1/c_n\partial\mathcal{G}_{\Omega}^a(P,Q)/\partial n_Q$ by $\mathcal{PI}_{\Omega}^a(P,Q)$, which is called the Poisson–Sch kernel (associated with the stationary Schrödinger operator SSE_a) on $T_n(\Omega)$. Here, $c_2 = 2$ and $c_n = (n-2)w_n$ when $n \geq 3$, where w_n is the surface area of the unit sphere in \mathbb{R}^n . The Poisson–Sch integral $\mathcal{PI}_{\Omega}^a[g](P)$ of g (associated with the stationary Schrödinger operator SSE_a) on $T_n(\Omega)$ is defined as follows $\mathcal{PI}_{\Omega}^a[g](P) = \int_{S_n(\Omega)} \mathcal{PI}_{\Omega}^a(P,Q)g(Q)d\sigma_Q$, where g is a continuous function on $S_n(\Omega)$ and $d\sigma_Q$ is the surface area element on $S_n(\Omega)$.

Let \mathscr{B}_{Ω} be the class of the potential $a(P) \in \mathscr{A}_{\Omega}(P = (X, y) = (r, \theta) \in T_n(\Omega))$ such that $\lim_{r \to \infty} r^2 a(r) = \kappa_0 \in [0, \infty)$ and $r^{-1}|r^2 a(r) - \kappa_0| \in L(1, \infty)$.

We denote by $SpH_a(\Omega)$ the class of all weak solutions of $SSE_au(P) \geq 0$ for any $P \in T_n(\Omega)$, which are continuous when $a \in \mathscr{B}_{\Omega}$ (see e.g. [4]). In the rest of paper, we will always assume that $a \in \mathscr{B}_{\Omega}$. If $u(P) \in SpH_a(\Omega)$ and $-u(P) \in SpH_a(\Omega)$, then u(P) is the solution of $SSE_au(P) = 0$ for any $P \in T_n(\Omega)$. The class of all solutions of it is denoted by $H_a(\Omega)$.

An important role will be played by the solutions of the ordinary differential equation

$$-\Pi''(y) + (\lambda + a(|y|))\Pi(y) = 0 \quad (-\infty < y < +\infty), \tag{1.1}$$

which has two specially linearly independent positive solutions V(y) and W(y) on \mathbf{R} such that V(y) is nondecreasing and W(y) is nonincreasing as $y \to \pm \infty$ (see [3, Ch. 11, Appendix C] for more details). The solutions V(y) and W(y) of Eq. (1.1) have the asymptotics $V(y) \approx \exp(\sqrt{\lambda}y)$ and $W(y) \approx \exp(-\sqrt{\lambda}y)$, as $y \to \pm \infty$ (see [3,5]). We remark that both $V(y)\varphi(X) \in H_a(\Omega)$ and $W(y)\varphi(X) \in H_a(\Omega)$ vanish continuously on $S_n(\Omega)$. Let $u(P) \in SpH_a(\Omega)$, we use the stand notations $u^+ = \max\{u, 0\}$ and $u^- = -\min\{u, 0\}$. The integral

Let $u(P) \in SpH_a(\Omega)$, we use the stand notations $u^+ = \max\{u, 0\}$ and $u^- = -\min\{u, 0\}$. The integral $\int_{\Omega} u(P)\varphi(X)d\Omega$ of u(P) is denoted by N(u)(y) when it exists, where P = (X, y). The finite or infinite limits $\lim_{y \to +\infty} N(u)(y)/V(y)$ and $\lim_{y \to +\infty} N(u)(y)/V(y)$ are denoted by $\mathscr{U}_V(u)$ and $\mathscr{V}_W(u)$ respectively, when they exist.

About Carleman's formula for harmonic functions in a half space and a smooth cone, we refer the reader to the papers by Zhang et al. (see [6]) and Ronkin (see [7]) respectively. Our main aim in this paper is to prove Carleman's formula for weak solutions of the stationary Schrödinger equation in a truncated cylinder. An application of it will be also given later.

Theorem 1.1. Let $0 < r < R < +\infty$ and define

$$\Psi(y) = V(y) \left(\frac{W(y)}{V(y)} - \frac{W(R)}{V(R)} \right)$$

where r < |y| < R. If $u(X,y) \in SpH_a(\Omega)$, then we have

$$\int_{T_n(\Omega,(-R,-r))} \mathfrak{T}(X,y) SSE_a u(X,y) dw$$

$$= \frac{\chi'(R)}{V(R)} N(u)(-R) + \int_{S_n(\Omega,(-R,-r))} u(X',y') \Psi(-y') \frac{\partial \varphi(X')}{\partial n_{X'}} d\sigma_Q + d_1(-r) + \frac{W(R)}{V(R)} d_2(-r) \qquad (1.2)$$

and

$$\int_{T_n(\Omega,(r,R))} \mathfrak{T}(X,y) SSE_a u(X,y) dw$$

$$= \frac{\chi'(R)}{V(R)} N(u)(R) + \int_{S_n(\Omega,(r,R))} u(X',y') \Psi(y') \frac{\partial \varphi(X')}{\partial n_{X'}} d\sigma_Q + d_1(r) + \frac{W(R)}{V(R)} d_2(r) \tag{1.3}$$

Download English Version:

https://daneshyari.com/en/article/8054347

Download Persian Version:

https://daneshyari.com/article/8054347

<u>Daneshyari.com</u>