Multiplicity results for the Kirchhoff type equations with critical growth

Liu Yang ${ }^{\text {a }}$, Zhisu Liu ${ }^{\text {b,* }}$, Zigen Ouyang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Computing Sciences, Hengyang Normal University, Hengyang, Hunan 421008, PR China
${ }^{\mathrm{b}}$ School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, PR China

A R T I C L E I N F O

Article history:

Received 26 May 2016
Received in revised form 30 July
2016
Accepted 30 July 2016
Available online 8 August 2016

Keywords:

Multiplicity
Kirchhoff type equation
Critical growth

A B S T R A C T

In this paper, we study the following Kirchhoff type equation with critical growth

$$
\left\{\begin{aligned}
-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \triangle u=\lambda u+\mu|u|^{2} u+|u|^{4} u & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{aligned}\right.
$$

where $a>0, b \geq 0$ and Ω is a smooth bounded domain in \mathbb{R}^{3}. When the real parameter μ is larger than some positive constant, we investigate the multiplicity of nontrivial solutions for the above problem with parameter λ belonging to a left neighborhood of the Dirichlet eigenvalue of the Laplacian operator $-\triangle$.
© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we investigate the multiplicity of solutions for the following non-local problem:

$$
\left\{\begin{align*}
-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=\lambda u+\mu|u|^{2} u+|u|^{4} u & \text { in } \Omega \tag{1.1}\\
u=0 & \text { on } \partial \Omega
\end{align*}\right.
$$

where $a>0, b \geq 0$ and Ω is a smooth bounded domain in \mathbb{R}^{3}. We remark that $|u|^{4} u$ reaches the Sobolev critical exponent since $2^{*}=6$ in dimension three. (1.1) is related to the stationary analogue of the following

[^0]equation
\[

\left\{$$
\begin{align*}
u_{t t}-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \triangle u=f(x, u) & \text { in } \Omega \tag{1.2}\\
u=0 & \text { on } \partial \Omega
\end{align*}
$$\right.
\]

Such problems are viewed as being nonlocal because of the presence of the term $\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x$, which implies that the equations in (1.1) and (1.2) are no longer a pointwise identity and are very different from classical elliptic equations. The solvability of the Kirchhoff type equations has been well studied in a general dimension by various authors only after Lions [1] introduced an abstract framework to this problem. For example, see [2-10]. We especially emphasize that, when a nonlinear elliptic boundary value problem has a critical term such as (1.1), a crucial difficulty occurs in proving the existence of solutions of the problem. Such difficulty is caused by the lack of compactness of the Sobolev embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{6}(\Omega)$. In order to overcome this difficulty, Naimen made use of the well-known method of Brezis and Nirenberg [11] to obtain some important existence results, for example, see [12,13]. However, our main aim in this paper is to use a cut-off technique together with an abstract critical point theorem (see [14]) to investigate the multiplicity of nontrivial solutions for (1.1).

Hereafter, we need the following preliminaries. Let $H:=H_{0}^{1}(\Omega)$ be the Sobolev space equipped with the inner product and the norm $\langle u, v\rangle=\int_{\Omega} \nabla u \nabla v \mathrm{~d} x,\|u\|:=\langle u, v\rangle^{\frac{1}{2}}$, respectively. Let $|\cdot|_{s}$ be the usual L_{s}-norm and since Ω is a bounded domain, $H \hookrightarrow L^{s}(\Omega)$ continuously for $s \in\left[1,2^{*}\right]$, compactly for $s \in\left[1,2^{*}\right)$. S denotes the best Sobolev constant: $S:=\inf \left\{\|u\|^{2} /|u|_{2^{*}}^{2}: u \in H_{0}^{1}(\Omega) \backslash\{0\}\right\}$. For convenience in computation, we use $a \lambda$ and $b \mu$ to denote λ and μ in (1.1), respectively. Therefore, (1.1) can be rewritten as

$$
\left\{\begin{align*}
-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \triangle u=a \lambda u+b \mu|u|^{2} u+|u|^{4} u, & \text { in } \Omega \tag{1.3}\\
u=0, & \text { on } \partial \Omega
\end{align*}\right.
$$

Denote by $0<\lambda_{1}<\lambda_{2} \leq \cdots$ the Dirichlet eigenvalues of $-\triangle$ on Ω, repeated according to multiplicity. Now we note that $\lambda_{1}>S /|\Omega|^{2 / 3}$. Indeed, let φ_{1} be an eigenfunction associated with λ_{1}. It is known that S is not attained at φ_{1}. Hence, from the Hölder inequality, we deduce that $\lambda_{1}=\left\|\varphi_{1}\right\|^{2} /\left|\varphi_{1}\right|_{2}^{2}>S /|\Omega|^{2 / 3}$.

Our main result reads as follows:
Theorem 1.1. Let $\lambda^{*}=\min \left\{\frac{S}{2(4|\Omega|)^{\frac{2}{3}}}, \frac{3^{2 / 3} a^{1 / 6} S^{1 / 2}}{b^{1 / 3} 2^{19 / 6}|\Omega|^{2 / 3}}, \frac{3^{2 / 3} a^{1 / 3}}{16 b^{2 / 3}|\Omega|^{2 / 3}}\right\}$.
(A1) If $\lambda_{1}-\lambda^{*}<\lambda<\lambda_{1}$ and μ is larger than some positive constant, then problem (1.3) has a pair of nontrivial solutions $\pm u^{\lambda}$.
(A2) If $\lambda_{k} \leq \lambda<\lambda_{k+1}=\cdots=\lambda_{k+m}<\lambda_{k+m+1}$ for some $k, m \in \mathbb{N}$ and $\lambda>\lambda_{k+1}-\lambda^{*}$ and μ is larger than some positive constant, then problem (1.1) has m distinct pairs of nontrivial solutions $\pm u_{j}^{\lambda}$, $j=1, \ldots, m$.

The remainder of this paper is organized as follows. Some preliminaries are presented in Section 2. In Section 3, we complete the proof of Theorem 1.1.

2. Preliminaries

Recall that a function $u \in H$ is called a weak solution of (1.3) if

$$
\begin{equation*}
\left(a+b\|u\|^{2}\right) \int_{\Omega} \nabla u \nabla v \mathrm{~d} x=\lambda a \int_{\Omega} u v \mathrm{~d} x+\mu b \int_{\Omega}|u|^{2} u v \mathrm{~d} x+\int_{\Omega}|u|^{4} u v \mathrm{~d} x, \quad \forall v \in H \tag{2.1}
\end{equation*}
$$

https://daneshyari.com/en/article/8054386

Download Persian Version:

https://daneshyari.com/article/8054386

Daneshyari.com

[^0]: * Corresponding author.

 E-mail address: liuzhisu183@sina.com (Z. Liu).

