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a b s t r a c t

We aim at demonstrating a novel theorem on the derivation of energy integrals
for linear second-order ordinary differential equations with variable coefficients.
Namely, in this context, we will present a possible and consistent method to
overcome the traditional difficulty of deriving energy integrals for Lagrangian
functions that explicitly exhibit the independent variable. Our theorem is such that
it appropriately governs the arbitrariness of the variable coefficients in order to have
energy integrals ensured. In view of the theoretical framework in which the theorem
will be embedded, we will also demonstrate that it can be applied as a mathematical
method to solve linear second-order ordinary differential equations with variable
coefficients. These results are expected to have a generalized fundamental
character.

© 2015 Elsevier Ltd. All rights reserved.

1. Preliminaries and motivation

Consider the general linear second-order ordinary differential equation

ẍ+ a(t)ẋ+ b(t)x+ c(t) = 0, (1)

where t is the independent variable, a(t), b(t) and c(t) are the variable coefficients, and x = x(t) is the
unknown function. Overdot means differentiation with respect to the independent variable. In the realm of
the inverse problem of Lagrangian mechanics (see, e.g., [1–3]), Eq. (1) is such that it results as Lagrange’s
equation of the extremum problem

δ

 t2
t1

L(x, ẋ, t)dt = 0, (2)
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where t1 and t2 are the definite limits, δ(.) is the usual operator of the calculus of variations, and the
Lagrangian L is given by

L =M(t)


1
2 ẋ

2 − 1
2b(t)x

2 − c(t)x

, (3)

with

M(t) = exp
 t
a(τ)dτ. (4)

The Hamiltonian H associated with Eq. (1) can be quickly obtained by inserting Eq. (3) into the classical
identity H = pẋ− L, with p = ∂L/∂ẋ, i.e.

p =M(t)ẋ, (5)

and so

H =M(t)


1
2 ẋ

2 + 1
2b(t)x

2 + c(t)x

. (6)

Since ∂L/∂t does not vanish identically in the variational expression

d

dt


∂L

∂ẋ
ẋ− L


= −∂L
∂t

(7)

(see Eq. (3)), it is not generally possible to state that the Hamiltonian H corresponds to an energy integral
of Eq. (1). This is a well-known issue of classical analytical mechanics (see, e.g., [4, Chap. III], [5, Chap. X],
[6, Chap. II], [7, Chap. V], [8, Chap. 1]). The upcoming content intends to propose a possible and consistent
solution to this problem, namely we will demonstrate a theorem that consistently yields energy integrals for
Eq. (1).

2. Theorem

Consider the following generalized transformation properties:

p→ π : p =M(t)1/2π, (8)

x→ ξ : 1
2M(t)b(t)x2 +M(t)c(t)x = φ(ξ). (9)

Suppose that this new variable ξ = ξ(t) is the solution of the differential equation ξ̈+∂φ(ξ)/∂ξ = 0. Noticing
that ξ̈ + ∂φ(ξ)/∂ξ = 0 is Lagrange’s equation for the new Lagrangian L = 1

2 ξ̇
2 − φ(ξ), the corresponding

new momentum π is naturally defined as π = ∂L/∂ξ̇, i.e.

π = ξ̇. (10)

These definitions properly characterize the right-hand side of Eqs. (8) and (9). Then, if the coefficients of
Eq. (1) satisfy the identity

1
2

a(t)b(t) + ḃ(t)


x2 + (a(t)c(t) + ċ(t))x− 1

2a(t)ẋ
2 = 0, (11)

the transformation properties (8) and (9) are such that they transform the Hamiltonian H (6) into an energy
integral of Eq. (1). This is the theorem.

Remark 1. Note that the condition (11) signifies a generalization of the classical notion of analytical
mechanics which asserts that: if ∂L/∂t = 0, then L = L(x, ẋ). The condition (11) mathematically imposes
that ∂L(x(t), ẋ(t), t)/∂t = 0 for x = x(t) as the solution of Eq. (1). This does not necessarily imply
L = L(x, ẋ).
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