Regularity of the steering control for systems with persistent memory

Luciano Pandolfi ${ }^{\mathrm{a}, *}$, Daniele Triulzi ${ }^{\text {b }}$
${ }^{\text {a }}$ Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
b Dipartimento di matematica "Federigo Enriquez", Via Saldini 50, 20133 Milano, Italy

A R T I C L E I N F O

Article history:

Received 18 May 2015
Received in revised form 14 July 2015
Accepted 14 July 2015
Available online 20 July 2015

Keywords:

Equations with persistent memory
Controllability
Regularity

Abstract

The following fact is known for large classes of distributed control systems: when the target is regular, there exists a regular steering control. This fact is important to prove convergence estimates of numerical algorithms for the approximate computation of the steering control.

In this paper we extend this property to a class of systems with persistent memory (of Maxwell/Boltzmann type) and we show that it is possible to construct such smooth control via the solution of an optimization problem.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We study the following system where $x \in(0, \pi)$ and $t>0$:

$$
\left\{\begin{array}{l}
w^{\prime \prime}(x, t)=w_{x x}(x, t)+\int_{0}^{t} M(t-s) w_{x x}(x, s) \mathrm{d} s, \quad w(0, t)=f(t), \quad w(\pi, t)=0 \tag{1}\\
w(x, 0)=0, w^{\prime}(x, 0)=0
\end{array}\right.
$$

We assume $M(t) \in H^{2}(0, T)$ and $f(t) \in L^{2}(0, T)$ for every $T>0$. As proved for example in [1], $w(x, t) \in C\left([0, T] ; L^{2}(0, \pi)\right) \cap C^{1}\left([0, T] ; H^{-1}(0, \pi)\right)$ and, for every $(\xi, \eta) \in L^{2}(0, \pi) \times H^{-1}(0, \pi)$ and $T>2 \pi$, there exists $f \in L^{2}(0, T)$ such that $w(T)=\xi, w^{\prime}(T)=\eta$. We prove:

Theorem 1. The following properties hold:

1. Let $(\xi, \eta) \in H_{0}^{1}(0, \pi) \times L^{2}(0, \pi)$ and let $T>2 \pi$. There exists a steering control $f \in H_{0}^{1}(0, T)$.

[^0]2. One of the smooth steering controls is the integral of the function g which realizes the minimum of a suitable quadratic functional introduced in Section 3.

The statement 1 is proved in Section 2 while statement 2 is in Section 3.
We conclude this introduction with few comments. First we note that system (1) is often encountered in the study of viscoelasticity and diffusion equations with memory. When $M(t)=0$ of course it reduces to the string equation. In the case of the wave equation (even when x in regions of $\mathbb{R}^{d}, d>1$) Theorem 1 is known. The proof that we give, based on moment methods, shows in particular controllability (in $H_{0}^{1}(0, \pi) \times L^{2}(0, \pi)$) of the cascade connection of system (1) with an integrator. We refer the reader to [2, Ch. 11] and references therein for this idea and to [3] for a precise analysis of the reachable set using smooth controls in the case of the wave equation.

For memoryless systems, a result analogous to Theorem 1 is the key for a numerical analysis of the construction of steering controls via optimization methods, see [4].

Finally, it is easy to guess that Theorem 1 can be extended to the case $\operatorname{dim} x>1$ and to higher regularity degree of the target. This will be the subject of a future analysis.

2. The moment problem and the proof of Theorem 1 item 1

The following computations are a bit simplified if we integrate the first equation of (1) on $[0, t]$ and we write it in the equivalent form (here $N(t)=1+\int_{0}^{t} M(s) \mathrm{d} s$)

$$
\begin{equation*}
w^{\prime}(x, t)=\int_{0}^{t} N(t-s) w_{x x}(x, s) \mathrm{d} s, \quad w(x, 0)=0, w(0, t)=f(t), w(\pi, t)=0 . \tag{2}
\end{equation*}
$$

We use the orthonormal basis of $L^{2}(0, \pi)$ whose elements are $\Phi_{n}=\sqrt{(2 / \pi)} \sin n x, n \in \mathbb{N}$, and we expand

$$
w(x, t)=\sum_{n \in \mathbb{N}} \Phi_{n}(x) w_{n}(t), \quad w_{n}(t)=\sqrt{\frac{2}{\pi}} \int_{0}^{\pi} \Phi_{n}(x) w(x) \mathrm{d} x .
$$

Then $w_{n}(x, t)$ must satisfy

$$
w_{n}^{\prime}(t)=-n^{2} \int_{0}^{t} N(t-s) w_{n}(s) \mathrm{d} s+n \int_{0}^{t} N(t-s)(\sqrt{2 / \pi} f(s)) \mathrm{d} s
$$

The function $\sqrt{2 / \pi} f$ will be renamed f.
Let $z_{n}(t)$ solve

$$
\begin{equation*}
z_{n}^{\prime}(t)=-n^{2} \int_{0}^{t} N(t-s) z_{n}(s) \mathrm{d} s, \quad z_{n}(0)=1 \tag{3}
\end{equation*}
$$

We have (see [5])

$$
\begin{align*}
w_{n}(t) & =n \int_{0}^{t}\left(\int_{0}^{t-s} N(t-s-\tau) z_{n}(\tau) d \tau\right) f(s) \mathrm{d} s \\
& =\frac{1}{n} \int_{0}^{t}\left(\frac{\mathrm{~d}}{\mathrm{~d} s} z_{n}(t-s)\right) f(s) \mathrm{d} s \tag{4}\\
w_{n}^{\prime}(t) & =n \int_{0}^{t}\left(-\frac{\mathrm{d}}{\mathrm{~d} s} \int_{0}^{t-s} N(t-s-\tau) z_{n}(\tau) d \tau\right) f(s) \mathrm{d} s . \tag{5}
\end{align*}
$$

We require that a target $(\xi, \eta) \in H_{0}^{1}(0, \pi) \times L^{2}(0, \pi)$ is reached at time T, i.e. we require $\left(w(T), w^{\prime}(T)\right)=$ (ξ, η).

https://daneshyari.com/en/article/8054412

Download Persian Version:

https://daneshyari.com/article/8054412

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: luciano.pandolfi@polito.it (L. Pandolfi), daniele.triulzi1@studenti.unimi.it (D. Triulzi).
 URL: http://calvino.polito.it/~lucipan/ (L. Pandolfi).

