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is considered. The necessary and sufficient conditions for 
the existence and uniqueness of the solution are derived. 
Furthermore, a numerical algorithm and some numerical 
examples are given.
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In this work, we investigate the uniqueness of solutions for a class of nonlinear
boundary value problems for fractional differential equations. The main novelty of
this work is that the Lipschitz constant is related to the first eigenvalues correspond-
ing to the relevant operators. Our analysis relies on the u0-positive operator.
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1. Introduction

In recent years, boundary value problems of nonlinear fractional differential equations have been studied
extensively in the literature (see, for instance, [1–16] and their references). Most of the results told us that
the fractional differential equations had at least single and multiple positive solutions by using techniques
of nonlinear analysis. For example, the authors [9] considered the existence of multiple positive solutions for
the following fractional differential equation with a negatively perturbed term

−Dp0+x(t) = p(t)f(t, x(t))− q(t), t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) = 0,

where Dp0+ is the standard Riemann–Liouville derivative, 2 < p ≤ 3 is a real number, q : (0, 1) → [0,+∞)
is Lebesgue integrable and does not vanish identically on any subinterval of (0, 1). They established the
existence results by Krasnosel’skii’s fixed point theorem in a cone.
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However, few results can be found in the literature concerning the uniqueness of solutions for boundary
value problems of fractional differential equations [17–20]. Rehman and Khan [19] studied the following
multi-point boundary value problems

Dαt y(t) = f(t, y(t), Dβt y(t)), t ∈ (0, 1),

y(0) = 0, Dβt y(1)−
m−2
i=1

ςiD
β
t y(ξi) = y0,

where 1 < α ≤ 2, 0 < β < 1, 0 < ξi < 1(i = 1, 2, . . . ,m − 2), ςi ≥ 0 with
m−2
i=1 ςiξ

α−β−1
i < 1 and Dαt

represents the standard Riemann–Liouville fractional derivative. They obtained the uniqueness existence of
solutions by means of the Banach fixed point theorem.

Motivated by the above works, we study the following boundary values problems for fractional differential
equations to develop new uniqueness results

Dpx(t) + p(t)f(t, x(t)) + q(t) = 0, t ∈ (0, 1),
x(0) = x′(0) = 0, x(1) = 0,

(1.1)

where 2 < p ≤ 3 is a real number. Under the assumption that f(t, x) is a Lipschitz continuous function, by
use of u0-positive operator, we study the uniqueness existence of solution for the fractional differential
equation (1.1). The interesting point is that the Lipschitz constant is related to the first eigenvalues
corresponding to the relevant operators.

In the rest of this paper, we always suppose that the following assumptions hold:
(H1) p : (0, 1) → [0,+∞) is continuous and does not vanish identically on any subinterval of (0, 1) such

that

0 <
 1

0
p(s)ds < +∞.

(H2) f : [0, 1]× R→ R is continuous.
(H3) q : (0, 1)→ R is continuous and Lebesgue integrable.

2. Preliminaries

For the convenience of the reader, we present here some necessary definitions from fractional calculus
theory. These definitions and properties can be found in the recent monograph [1–5].

Definition 2.1. The Riemann–Liouville fractional integral of order p > 0 of a function f : (0,∞) → R is
given by

Ipf(t) = 1
Γ (p)

 t
0

(t− s)p−1f(s)ds,

provided that the right-hand side is pointwise defined on (0,∞).

Definition 2.2. The Riemann–Liouville fractional derivative of order p > 0 of a continuous function
f : (0,∞)→ R is given by

Dpf(t) = 1
Γ (n− p)


d

dt

n  t
0

f(s)
(t− s)p−n+1 ds,

where n− 1 ≤ α < n, provided that the right-hand side is pointwise defined on (0,∞).
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