Uniqueness of solution for boundary value problems for fractional differential equations ${ }^{\text {Th }}$

Yujun Cui＊
State Key Laboratory of Mining Disaster Prevention and Control Co－founded by Shandong Province and the Ministry of Science and Technology，Shandong University of Science and Technology， Qingdao 266590，China
Department of Applied Mathematics，University of Waterloo，Waterloo，Ontario N2L 3G1，Canada

A R T I C L E IN F O

Article history：

Received 1 June 2015
Received in revised form 7 July 2015
Accepted 7 July 2015
Available online 17 July 2015

Keywords：

Fractional differential equation
u_{0}－positive operator
The first eigenvalue

Abstract

In this work，we investigate the uniqueness of solutions for a class of nonlinear boundary value problems for fractional differential equations．The main novelty of this work is that the Lipschitz constant is related to the first eigenvalues correspond－ ing to the relevant operators．Our analysis relies on the u_{0}－positive operator． © 2015 Elsevier Ltd．All rights reserved．

1．Introduction

In recent years，boundary value problems of nonlinear fractional differential equations have been studied extensively in the literature（see，for instance，［1－16］and their references）．Most of the results told us that the fractional differential equations had at least single and multiple positive solutions by using techniques of nonlinear analysis．For example，the authors［9］considered the existence of multiple positive solutions for the following fractional differential equation with a negatively perturbed term

$$
\left\{\begin{array}{l}
-D_{0+}^{p} x(t)=p(t) f(t, x(t))-q(t), \quad t \in(0,1) \\
x(0)=x^{\prime}(0)=0, \quad x(1)=0
\end{array}\right.
$$

where D_{0+}^{p} is the standard Riemann－Liouville derivative， $2<p \leq 3$ is a real number，$q:(0,1) \rightarrow[0,+\infty)$ is Lebesgue integrable and does not vanish identically on any subinterval of $(0,1)$ ．They established the existence results by Krasnosel＇skii＇s fixed point theorem in a cone．

[^0]However, few results can be found in the literature concerning the uniqueness of solutions for boundary value problems of fractional differential equations [17-20]. Rehman and Khan [19] studied the following multi-point boundary value problems

$$
\left\{\begin{array}{l}
D_{t}^{\alpha} y(t)=f\left(t, y(t), D_{t}^{\beta} y(t)\right), \quad t \in(0,1) \\
y(0)=0, \quad D_{t}^{\beta} y(1)-\sum_{i=1}^{m-2} \varsigma_{i} D_{t}^{\beta} y\left(\xi_{i}\right)=y_{0}
\end{array}\right.
$$

where $1<\alpha \leq 2,0<\beta<1,0<\xi_{i}<1(i=1,2, \ldots, m-2), \varsigma_{i} \geq 0$ with $\sum_{i=1}^{m-2} \varsigma_{i} \xi_{i}^{\alpha-\beta-1}<1$ and D_{t}^{α} represents the standard Riemann-Liouville fractional derivative. They obtained the uniqueness existence of solutions by means of the Banach fixed point theorem.

Motivated by the above works, we study the following boundary values problems for fractional differential equations to develop new uniqueness results

$$
\left\{\begin{array}{l}
D^{p} x(t)+p(t) f(t, x(t))+q(t)=0, \quad t \in(0,1) \tag{1.1}\\
x(0)=x^{\prime}(0)=0, \quad x(1)=0
\end{array}\right.
$$

where $2<p \leq 3$ is a real number. Under the assumption that $f(t, x)$ is a Lipschitz continuous function, by use of u_{0}-positive operator, we study the uniqueness existence of solution for the fractional differential equation (1.1). The interesting point is that the Lipschitz constant is related to the first eigenvalues corresponding to the relevant operators.

In the rest of this paper, we always suppose that the following assumptions hold:
$\left(\mathrm{H}_{1}\right) p:(0,1) \rightarrow[0,+\infty)$ is continuous and does not vanish identically on any subinterval of $(0,1)$ such that

$$
0<\int_{0}^{1} p(s) d s<+\infty
$$

$\left(\mathrm{H}_{2}\right) f:[0,1] \times \mathbb{R} \rightarrow \mathbb{R}$ is continuous.
$\left(\mathrm{H}_{3}\right) q:(0,1) \rightarrow \mathbb{R}$ is continuous and Lebesgue integrable.

2. Preliminaries

For the convenience of the reader, we present here some necessary definitions from fractional calculus theory. These definitions and properties can be found in the recent monograph [1-5].

Definition 2.1. The Riemann-Liouville fractional integral of order $p>0$ of a function $f:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
I^{p} f(t)=\frac{1}{\Gamma(p)} \int_{0}^{t}(t-s)^{p-1} f(s) d s
$$

provided that the right-hand side is pointwise defined on $(0, \infty)$.

Definition 2.2. The Riemann-Liouville fractional derivative of order $p>0$ of a continuous function $f:(0, \infty) \rightarrow \mathbb{R}$ is given by

$$
D^{p} f(t)=\frac{1}{\Gamma(n-p)}\left(\frac{d}{d t}\right)^{n} \int_{0}^{t} \frac{f(s)}{(t-s)^{p-n+1}} d s
$$

where $n-1 \leq \alpha<n$, provided that the right-hand side is pointwise defined on $(0, \infty)$.

https://daneshyari.com/en/article/8054414

Download Persian Version:

https://daneshyari.com/article/8054414

Daneshyari.com

[^0]: The Project Supported by the National Natural Science Foundation of China（11371221），the Specialized Research Foundation for the Doctoral Program of Higher Education of China（20123705110001），the Program for Scientific Research Innovation Team in Colleges and Universities of Shandong Province．
 ＊Correspondence to：State Key Laboratory of Mining Disaster Prevention and Control Co－founded by Shandong Province and the Ministry of Science and Technology，Shandong University of Science and Technology，Qingdao 266590，China．

 E－mail address：cyj720201＠163．com．

