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a b s t r a c t

In this paper, a class of impulsive fractional differential systems with finite delay is consid-
ered. Some sufficient conditions for the finite-time stability of above systems are obtained
by using generalized Bellman–Gronwall’s inequality, which extend some known results.
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1. Introduction

Recently, finite-time stability analysis of fractional differential systems with delay is presented and reported [1,2]. The
main approach is generalized Bellman–Gronwall’s inequality [3]. For some advances in the control theory of fractional
dynamical systems for stability, we refer the reader to [4–12]. For more details of impulsive fractional differential equations
with its applications, we refer the reader to [13–23].

Motivated by [1,2], we will investigate the finite-time stability of the following nonautonomous impulsive fractional
differential systems

Dαx(t) = A0x(t)+ A1x(t − τ)+ B0u(t), t ∈ J ′ := J \ {t1, t2, . . . , tm}, J = [0, T ],

∆x(tk) = Ckx(t−k ), k = 1, 2, . . . ,m, (1.1)

with it’s autonomous type
Dαx(t) = A0x(t)+ A1x(t − τ), t ∈ J ′ := J \ {t1, t2, . . . , tm}, J = [0, T ],

∆x(tk) = Ckx(t−k ), k = 1, 2, . . . ,m, (1.2)

with initial condition x(t) = ψx(t), t ∈ [−τ , 0], where Dα denotes the Caputo fractional derivative of order α ∈ (0, 1),
x(t) ∈ Rn is a state vector, u(t) ∈ Rm is a control vector, A0, A1, B0, Ck are constant matrices of appropriate dimensions, and
τ > 0 is a constant time delay. tk satisfy t0 < t1 < · · · tm = T , x(t+k ) = limϵ→0+ x(tk + ϵ) and x(t−k ) = limϵ→0− x(tk + ϵ)
represent the right and left limits of x(t) at t = tk. Dynamical behavior of system (1.1), (1.2), with a given initial function is
defined over time interval J = [t0, t0 + T ], J ⊂ R,where quantity T may be either a positive real number or a symbol +∞,
so finite-time stability and practical stability can be treated simultaneously. Time invariant sets, used as bounds of system
trajectories, are assumed to be open, connected and bounded. Let index ‘‘ε’’ stands for the set of all allowable states of the sys-
tem and index ‘‘δ’’ for the set of all initial states of the system, such that the set Sδ ⊆ Sε . Let Sρ = {x : ∥x∥2

Q < ρ}, ρ ∈ [δ, ε],
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whereQ will be assumed to be a symmetric, positive definite, realmatrix. Sαu denotes the set of all allowable control actions.
Let |x|(·) be any vector norm (e.g., : = 1, 2,∞) and ∥x∥(·) the matrix norm induced by this vector. The initial function can be
written as: x(t0 + θ) = ψx(θ), θ ∈ [−τ , 0], ψx(θ) ∈ C([−τ , 0], R), where t0 is the initial time of observation of the system
(1.1), (1.2) and C([−τ , 0], R) is a Banach space of continuous functions over a time interval of length τ , mapping the interval
[t − τ , t] into Rn with the norm defined in the following manner: ∥ψ∥C = maxθ∈[−τ ,0]{∥ψ(θ)∥}. It is assumed that the
usual smoothness condition is present so that there is no difficulty with questions of existence, uniqueness, and continuity
of solutions with respect to initial data.

Definition 1.1. System given by (1.2) satisfying initial condition x(t) = ψx(t), t ∈ [−τ , 0] is finite stable w.r.t. {t0, J, δ,
ϵ, τ }, δ < ϵ if and only if ∥ψ∥C < δ implies |x| < ϵ, ∀t ∈ J,where t0 denotes the initial time of observation of the system
and J denotes time interval J = [t0, t0 + T ], J ⊂ R.

Definition 1.2. The system given by (1.2) satisfying initial condition x(t) = ψx(t), t ∈ [−τ , 0] is finite stable w.r.t. {t0, J, δ,
ϵ, τ }, δ < ϵ if and only if ∥ψ∥C < δ and ∥u(t)∥ < αu imply |x| < ϵ, ∀t ∈ J,where t0 denotes the initial time of observation
of the system and J denotes time interval J = [t0, t0 + T ], J ⊂ R.

The organization of this paper is as follows. In Section 2, we introduce some preliminaries. In Section 3, by using the
generalized Gronwall inequality, we obtain some results of stability for system (1.1) and (1.2).

2. Preliminaries

Let us recall some definitions of fractional calculus. For more details see [24].

Definition 2.1. The fractional integral of order γ with the lower limit zero for a function f : [0,∞) → R is defined as

Iγt f (t) =
1

Γ (γ )

 t

0

f (s)
(t − s)1−γ

ds, t > 0, n − 1 < γ < n,

provided the right side is point-wise defined on [0,∞), where Γ (·) is the gamma function.

Definition 2.2. The Riemann–Liouville derivative of order γ with the lower limit zero for a function f : [0,∞) → R is
defined as

LDγt f (t) =
1

Γ (n − γ )

dn

dtn

 t

0

f (s)
(t − s)γ+1−n

ds, t > 0, n − 1 < γ < n.

Definition 2.3. The Caputo derivative of order γ with the lower limit zero for a function f : [0,∞) → R is defined as

cDγt f (t)=
L Dγt


f (t)−

n−1
k=0

tk

k!
f (k)(0)


, t > 0, n − 1 < γ < n.

Lemma 2.1 ([3] Generalized Gronwall Inequality). Suppose x(t), a(t) are nonnegative and local integrable on 0 ≤ t < T some
T ≤ +∞, and g(t) is a nonnegative, nondecreasing continuous function defined on 0 ≤ t < T , g(t) ≤ M = constance , α > 0
with

x(t) ≤ a(t)+ g(t)
 t

0
(t − s)α−1x(s)ds

on this interval. Then

x(t) ≤ a(t)+ g(t)
 t

0

 ∞
n=1

(g(t)Γ (α))n

Γ (nα)
(t − s)nα−1a(s)


ds, 0 ≤ t < T .

Corollary 2.1 ([3] Theorem 3.2.). Under the hypothesis of Theorem 3.2, let a(t) be a nondecreasing function on [0, T ). Then we
have

x(t) ≤ a(t)Eα(g(t)Γ (α)tα),

where Eα(z) =


∞

k=0
zk

Γ (kβ+1) , z ∈ C, Re(β) > 0.

Similar to the proof of Lemma 2.8 of [25], we have

Lemma 2.2. Let u ∈ PC(J, R) satisfy the following inequality

∥u(t)∥ ≤ c1(t)+ c2

 t

0
(t − s)q−1

∥u(s)∥ds +


0<tk<t

θk∥u(tk)∥,
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