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Abstract

This paper presents a new and alternative univariate method for predicting component reliability of mechanical systems subject to random
loads, material properties, and geometry. The method involves novel function decomposition at a most probable point that facilitates the univariate
approximation of a general multivariate function in the rotated Gaussian space and one-dimensional integrations for calculating the failure
probability. Based on linear and quadratic approximations of the univariate component function in the direction of the most probable point,
two mathematical expressions of the failure probability have been derived. In both expressions, the proposed effort in evaluating the failure
probability involves calculating conditional responses at a selected input determined by sample points and Gauss–Hermite integration points.
Numerical results indicate that the proposed method provides accurate and computationally efficient estimates of the probability of failure.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A fundamental problem in time-invariant component relia-
bility analysis entails calculation of a multi-fold integral [1–3]

PF ≡ P [g(X) < 0] =

∫
g(x)<0

fX(x) dx, (1)

where X = {X1, . . . , X N }
T

∈ RN is a real-valued,
N -dimensional (N ≥ 2) random vector defined on a
probability space (Ω ,F, P) comprising the sample space Ω ,
the σ -field F , and the probability measure P; g(x) is the
performance function, such that g(x) < 0 represents the
failure domain; PF is the probability of failure; and fX(x)

is the joint probability density function of X, which typically
represents loads, material properties, and geometry. The most
common approach to compute the failure probability in
Eq. (1) involves the first- and second-order reliability methods
(FORM/SORM) [1–8], which are respectively based on linear
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(FORM) and quadratic (SORM) approximations of the limit-
state surface at a most probable point (MPP) in the standard
Gaussian space. When the distance βHL between the origin
and the MPP, a point on the limit-state surface that is
closest to the origin, approaches infinity, FORM/SORM strictly
provides asymptotic solutions. For non-asymptotic (finite
βHL) applications involving a highly nonlinear performance
function, its linear or quadratic approximation may not be
adequate and therefore resultant FORM/SORM predictions
must be interpreted with caution [9]. In the latter cases, an
importance sampling method developed by Hohenbichler and
Rackwitz [10] can make the FORM/SORM result arbitrarily
exact, but it may become expensive if a large number of
costly numerical analyses, such as large-scale finite element
analysis embedded in the performance function, are involved.
Furthermore, the existence of multiple MPPs may lead to
large errors in standard FORM/SORM approximations [3,8].
In that case, multi-point FORM/SORM, along with the system
reliability concept, is required to improve component reliability
analysis [8].

Recently, the authors have developed new decomposition
methods, which can solve highly nonlinear reliability problems
more accurately or more efficiently than FORM/SORM and
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y(v) = y0 +

N∑
i=1

yi (vi )︸ ︷︷ ︸
=ŷ1(v)

+

N∑
i1,i2=1
i1<i2

yi1i2(vi1 , vi2)

︸ ︷︷ ︸
=ŷ2(v)

+ · · · +

N∑
i1,...,iS=1
i1<···<iS

yi1···iS (vi1 , . . . , vis )

︸ ︷︷ ︸
=ŷS(v)

+ · · · + y12···N (v1, . . . , vN ),

Box I.

simulation methods [11,12]. A major advantage of these
decomposition methods, so far based on the mean point [11]
or MPP [12] of a random input as reference points,
over FORM/SORM is that higher-order approximations of
performance functions can be achieved using function values
alone. In particular, an MPP-based univariate method developed
in the authors’ previous work involves univariate approximation
of the performance function at the MPP, n-point Lagrange
interpolation in the rotated Gaussian space, and subsequent
Monte Carlo simulation [12]. The present work is motivated
by an argument that the MPP-based univariate approximation,
if appropriately cast in the rotated Gaussian space, permits
an efficient evaluation of the component failure probability by
multiple one-dimensional integrations.

This paper presents a new and alternative MPP-based
univariate method for predicting the component reliability
of mechanical systems subject to random loads, material
properties, and geometry. Section 2 gives a brief exposition
of a novel function decomposition at the MPP that
facilitates a lower-dimensional approximation of a general
multivariate function. Section 3 describes the proposed
univariate method, which involves univariate approximation
of the performance function at the MPP and univariate
numerical integrations. Section 4 explains the computational
effort and flowchart of the proposed method. Five numerical
examples involving elementary mathematical functions and
structural/solid-mechanics problems illustrate the method
developed in Section 5. Comparisons have been made with
alternative approximate and simulation methods to evaluate the
accuracy and computational efficiency of the new method.

2. Multivariate function decomposition at MPP

Consider a continuous, differentiable, real-valued perfor-
mance function g(x) that depends on x = {x1, . . . , xN }

T
∈

RN . If u = {u1, . . . , uN }
T

∈ RN is the standard Gaussian
space, let u∗

=
{
u∗

1, . . . , u∗

N

}T denote the MPP or beta point,
which is the closest point on the limit-state surface to the ori-
gin. The MPP has a distance βHL, which is commonly re-
ferred to as the Hasofer–Lind reliability index [1–3], deter-
mined by a standard nonlinear constrained optimization. Con-
struct an orthogonal matrix R ∈ RN×N whose N th column is
α∗

≡ u∗/βHL, i.e., R =
[
R1 | α∗

]
, where R1 ∈ RN×N−1 sat-

isfies α∗TR1 = 0 ∈ R1×N−1. The matrix R can be obtained,
for example, by Gram–Schmidt orthogonalization. For an or-
thogonal transformation u = Rv, let v = {v1, . . . , vN }

T
∈ RN

represent the rotated Gaussian space with the associated MPP

Fig. 1. Performance function approximations by various methods.

v∗
=

{
v∗

1 , . . . , v∗

N−1, v
∗

N

}T
= {0, . . . , 0, βHL}

T. The trans-
formed limit states h(u) = 0 and y(v) = 0 are therefore the
maps of the original limit state g(x) = 0 in the standard Gaus-
sian space (u space) and the rotated Gaussian space (v space),
respectively. Fig. 1 depicts FORM and SORM approximations
of a limit-state surface at the MPP for N = 2.

Consider a decomposition of a general multivariate function
y(v), which can be viewed as a finite sum [11–13] (see Box I),
where y0 is a constant, yi (vi ) is a univariate component function
representing an individual contribution to y(v) by input variable
vi acting alone, yi1i2(vi1 , vi2) is a bivariate component function
describing the cooperative influence of two input variables
vi1 and vi2 , yi1···iS (vi1 , . . . , viS ) is an S-variate component
function quantifying the cooperative effects of S input variables
vi1 , . . . , viS , and so on. If

ŷS(v) = y0 +

N∑
i=1

yi (vi ) +

N∑
i1,i2=1
i1<i2

yi1i2(vi1 , vi2)

+ · · · +

N∑
i1,...,iS=1
i1<···<iS

yi1···iS (vi1 , . . . , vis ) (2)

represents a general S-variate approximation of y(v), the
univariate (S = 1) and bivariate (S = 2) approximations
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