Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Sign-changing first derivative of positive solutions of forced second-order nonlinear differential equations

Mervan Pašić*

University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, 10000 Zagreb, Croatia

ARTICLE INFO

Article history: Received 26 June 2014 Received in revised form 4 September 2014 Accepted 4 September 2014 Available online 28 September 2014

Keywords: Oscillatory phenomena Positive solutions Sign-changing first derivative

ABSTRACT

Some oscillatory phenomena in physics, population, biomedicine and biochemistry are described by positive functions having sign-changing first derivative. Here, it is studied for all positive not necessarily periodic solutions of a large class of second-order nonlinear differential equations. It is based on a new reciprocal principle by which the classic oscillations of corresponding reciprocal linear equation causes the sign-changing first derivative of every positive solution of the main equation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Neutrino oscillation probabilities in particle physics (see [1, Chapter 4]), numbers of the predator and prey in a sizestructured population (see [2, Section 2]), biomedical oscillations such as: cardiac, apnea, airway pressure (see [3,4]), and biochemical oscillations such as: glycolytic—two enzyme reactions, intracellular calcium (see [5, Sections 2, 4 and 9]), they all are modeled by positive real continuous functions x(t) having sign-changing first derivative x'(t) (see [1, Fig. 4.1], [2, Fig. 2], [3, Fig. 5], [4, Fig. 2], [5, Figs. 2.5, 2.7, 2.14, 4.31], [5, Figs. 9.2, 9.3, 9.8, 9.10, 9.21, 9.23]).

Under the positive x(t) and sign-changing x'(t) respectively, we mean as usual that x(t) > 0 on $[T, \infty)$ for some T > 0and $(-1)^n x'(t) > 0$ on (a_n, b_n) , $\forall n \in \mathbb{N}$, where $0 \le t_0 < a_1 < b_1 \le \cdots \le a_n < b_n \le a_{n+1} < b_{n+1} \le \cdots, a_n \to \infty$ as $n \to \infty$.

We study positive solutions x(t) of the following second-order differential equation:

$$(r(t)x')' + p(t)x' + q(t)x + f(t, x) = e(t), \quad t \ge t_0,$$

where $p, e \in C([t_0, \infty), \mathbb{R}), r, q \in C^1([t_0, \infty), \mathbb{R}), x \in C^1([t_0, \infty), \mathbb{R}) \cap C^2((t_0, \infty), \mathbb{R}), \text{and } f(t, x)x \ge 0 \text{ for all } t \ge t_0, x > 0,$ and e(t) is an oscillatory force, that is, $(-1)^n e(t) \ge 0$ on $(a_n, b_n), \forall n \in \mathbb{N}$.

The linear case f(t, x) = x and the nonlinear case of Emden–Fowler type $f(t, x) = g(t)|x|^{\nu} \operatorname{sgn}(x)$, where $g(t) \ge 0$ and $\nu > 0$, are included in our main results too.

Any positive periodic smooth function x(t) must have the sign-changing x'(t). Existence of positive periodic solutions of the second-order differential equations with periodic coefficients have been studied in [6–9]. However, very often, x(t) is not periodic and x'(t) is sign-changing, see for instance the visual example given in Fig. 1.

Main problem. Find sufficient condition on the coefficients r(t), p(t) and q(t) such that every positive solution of Eq. (1.1) has the sign-changing first derivative.

* Tel.: +385 981809669.

http://dx.doi.org/10.1016/j.aml.2014.09.002 0893-9659/© 2014 Elsevier Ltd. All rights reserved.

Applied

Mathematics Letters

E-mail address: applied.science.mpasic@gmail.com.

Example 1.1. Equation $x'' + \frac{1}{4}t^{-2}x = (\frac{1}{4}t^{-2} - 1)\sin t$ has the nonoscillatory general solution $x(t) = \sqrt{t}(c_1 + c_2 \ln t) + \sin t$, $c_1^2 + c_2^2 > 0$, but x'(t) is sign-changing. \Box

In contrast to the positive periodic behavior, the next three cases do not support the sign-changing x'(t) for all positive x(t): Eq. (1.1) may be oscillatory (and so, there is no any positive x(t)) or every positive solution is increasing (so, x'(t) is not sign-changing, see [10]) or a kind of the coexistence occurs such as the following two: the simultaneously existence of positive, negative and sign-changing solutions, see for an abstract approach in [11], or two positive solutions $x_1(t) = 2t^{-1}$ and $x_2(t) = t^{-1} \sin(t) + 2t^{-1}$ of linear differential equation $x'' + 2t^{-1}x' + x = 2t^{-1}$ such that $x_1(t)$ is positive and increasing, but $x_2(t)$ is positive with sign-changing $x'_2(t) = -t^{-2}(2 - \cos(t)) + t^{-1}\cos(t)$.

To the best of our knowledge, there are only a few papers dealing, from different aspects, with solutions which have sign-changing first derivative: the nodal properties of x(t) and x'(t) (see [12,13]), the distance between zeros of x(t) and x'(t) (see [14,15]).

2. Preliminaries: Existence of solution of the reciprocal equation

The basic assumptions on the coefficients r(t), p(t), and q(t) are the following:

$$r(t) > 0, q(t) > 0, p^{2}(t) \le 4r(t)q(t) \text{ and } (-1)^{n}e(t) \ge 0 \text{ on } [a_{n}, b_{n}],$$
 (2.1)

where $0 \le t_0 < a_1 < b_1 \le \cdots \le a_n < b_n \le a_{n+1} < b_{n+1} \le \cdots, a_n \to \infty$ as $n \to \infty$. The third inequality in (2.1) is not restrictive because it holds always in undamped case $p(t) \equiv 0$.

We start this section with a fundamental result on the existence of solutions of the first order ode's by sub-super solutions technique.

Lemma 2.1 ([16, Theorem 1.2.1 or Theorem 1.1.4]). Let $F : [a, b] \times \mathbb{R} \to \mathbb{R}$ be a continuous function. Let $\underline{\omega}, \bar{\omega} \in C^1([a, b], \mathbb{R})$ be two functions such that $\frac{d\omega}{dt} \leq F(t, \underline{\omega})$ and $\frac{d\bar{\omega}}{dt} \geq F(t, \bar{\omega})$ on (a, b). If $\underline{\omega}(t) \leq \overline{\omega}(t)$ on [a, b] and $\underline{\omega}(a) \leq c_0 \leq \overline{\omega}(a)$, then there exists a solution $\omega \in C^1([a, b], \mathbb{R})$ of the initial value problem $\frac{d\omega}{dt} = F(t, \omega)$ on (a, b) and $\omega(a) = c_0$, such that $\underline{\omega}(t) \leq \omega(t) \leq \overline{\omega}(t)$ on [a, b].

On the monotone iterative technique and sub-super solution method for the first order ode's, we refer reader to [17,18, 16,19], and references therein.

According to Lemma 2.1 and the assumption (2.1), we derive a sufficient condition for the interval global existence of a solution of the so-called *reciprocal linear differential equation*:

$$\left(\frac{1}{q(t)}y'\right)' - \frac{p(t)}{q(t)r(t)}y' + \frac{1}{r(t)}y = 0, \quad t \in (a_n, b_n), \ n \in \mathbb{N},$$
(2.2)

which is associated to the main equation (1.1), where $y \in C([a_n, b_n], \mathbb{R}) \cap C^2((a_n, b_n), \mathbb{R})$.

Theorem 2.1. Let $f(t, s)s \ge 0$ for all $t \ge t_0$, s > 0 and (2.1) hold. For every positive solution x(t) of Eq. (1.1) such that $x'(t) \ne 0$ on $[a_{2n-1}, b_{2n-1}]$, $\forall n \ge n_0$ and some $n_0 \in \mathbb{N}$, there exists $\omega = \omega(t)$, $\omega \in C^1([a_{2n-1}, b_{2n-1}], \mathbb{R})$ which is a solution of equation:

$$\begin{cases} \frac{d\omega}{dt} = q(t)\omega^2 + \frac{p(t)}{r(t)}\omega + \frac{1}{r(t)}, & t \in (a_{2n-1}, b_{2n-1}), n \ge n_0, \\ \omega(a_{2n-1}) = \frac{x(a_{2n-1})}{r(a_{2n-1})x'(a_{2n-1})}, & n \ge n_0. \end{cases}$$
(2.3)

Moreover, the function

$$\mathbf{y}(t) = \exp\left(-\int_{a_{2n-1}}^{t} q(\tau)\omega(\tau)d\tau\right), \quad t \in [a_{2n-1}, b_{2n-1}], \ n \ge n_0,$$
(2.4)

satisfies the reciprocal equation (2.2) on the intervals (a_n, b_n) with odd n.

Download English Version:

https://daneshyari.com/en/article/8054430

Download Persian Version:

https://daneshyari.com/article/8054430

Daneshyari.com