Sign-changing first derivative of positive solutions of forced second-order nonlinear differential equations

Mervan Pašić*
University of Zagreb, Faculty of Electrical Engineering and Computing, Department of Applied Mathematics, 10000 Zagreb, Croatia

ARTICLE INFO

Article history:

Received 26 June 2014
Received in revised form 4 September 2014
Accepted 4 September 2014
Available online 28 September 2014

Keywords:

Oscillatory phenomena
Positive solutions
Sign-changing first derivative

Abstract

Some oscillatory phenomena in physics, population, biomedicine and biochemistry are described by positive functions having sign-changing first derivative. Here, it is studied for all positive not necessarily periodic solutions of a large class of second-order nonlinear differential equations. It is based on a new reciprocal principle by which the classic oscillations of corresponding reciprocal linear equation causes the sign-changing first derivative of every positive solution of the main equation.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Neutrino oscillation probabilities in particle physics (see [1, Chapter 4]), numbers of the predator and prey in a sizestructured population (see [2, Section 2]), biomedical oscillations such as: cardiac, apnea, airway pressure (see [3,4]), and biochemical oscillations such as: glycolytic-two enzyme reactions, intracellular calcium (see [5, Sections 2, 4 and 9]), they all are modeled by positive real continuous functions $x(t)$ having sign-changing first derivative $x^{\prime}(t)$ (see [1, Fig. 4.1], [2, Fig. 2], [3, Fig. 5], [4, Fig. 2], [5, Figs. 2.5, 2.7, 2.14, 4.31], [5, Figs. 9.2, 9.3, 9.8, 9.10, 9.21, 9.23]).

Under the positive $x(t)$ and sign-changing $x^{\prime}(t)$ respectively, we mean as usual that $x(t)>0$ on $[T, \infty)$ for some $T>0$ and $(-1)^{n} x^{\prime}(t)>0$ on $\left(a_{n}, b_{n}\right), \forall n \in \mathbb{N}$, where $0 \leq t_{0}<a_{1}<b_{1} \leq \cdots \leq a_{n}<b_{n} \leq a_{n+1}<b_{n+1} \leq \cdots, a_{n} \rightarrow \infty$ as $n \rightarrow \infty$.

We study positive solutions $x(t)$ of the following second-order differential equation:

$$
\begin{equation*}
\left(r(t) x^{\prime}\right)^{\prime}+p(t) x^{\prime}+q(t) x+f(t, x)=e(t), \quad t \geq t_{0} \tag{1.1}
\end{equation*}
$$

where $p, e \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right), r, q \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right), x \in C^{1}\left(\left[t_{0}, \infty\right), \mathbb{R}\right) \cap C^{2}\left(\left(t_{0}, \infty\right), \mathbb{R}\right)$, and $f(t, x) x \geq 0$ for all $t \geq t_{0}, x>0$, and $e(t)$ is an oscillatory force, that is, $(-1)^{n} e(t) \geq 0$ on $\left(a_{n}, b_{n}\right), \forall n \in \mathbb{N}$.

The linear case $f(t, x)=x$ and the nonlinear case of Emden-Fowler type $f(t, x)=g(t)|x|^{\nu} \operatorname{sgn}(x)$, where $g(t) \geq 0$ and $v>0$, are included in our main results too.

Any positive periodic smooth function $x(t)$ must have the sign-changing $x^{\prime}(t)$. Existence of positive periodic solutions of the second-order differential equations with periodic coefficients have been studied in [6-9]. However, very often, $x(t)$ is not periodic and $x^{\prime}(t)$ is sign-changing, see for instance the visual example given in Fig. 1.
Main problem. Find sufficient condition on the coefficients $r(t), p(t)$ and $q(t)$ such that every positive solution of Eq. (1.1) has the sign-changing first derivative.

[^0]

Fig. 1. Function $x(t)=3 t^{-2} \sin (t)+t^{-1}$.
Example 1.1. Equation $x^{\prime \prime}+\frac{1}{4} t^{-2} x=\left(\frac{1}{4} t^{-2}-1\right) \sin t$ has the nonoscillatory general solution $x(t)=\sqrt{t}\left(c_{1}+c_{2} \ln t\right)+\sin t$, $c_{1}^{2}+c_{2}^{2}>0$, but $x^{\prime}(t)$ is sign-changing.

In contrast to the positive periodic behavior, the next three cases do not support the sign-changing $x^{\prime}(t)$ for all positive $x(t)$: Eq. (1.1) may be oscillatory (and so, there is no any positive $x(t)$) or every positive solution is increasing (so, $x^{\prime}(t)$ is not sign-changing, see [10]) or a kind of the coexistence occurs such as the following two: the simultaneously existence of positive, negative and sign-changing solutions, see for an abstract approach in [11], or two positive solutions $x_{1}(t)=2 t^{-1}$ and $x_{2}(t)=t^{-1} \sin (t)+2 t^{-1}$ of linear differential equation $x^{\prime \prime}+2 t^{-1} x^{\prime}+x=2 t^{-1}$ such that $x_{1}(t)$ is positive and increasing, but $x_{2}(t)$ is positive with sign-changing $x_{2}^{\prime}(t)=-t^{-2}(2-\cos (t))+t^{-1} \cos (t)$.

To the best of our knowledge, there are only a few papers dealing, from different aspects, with solutions which have sign-changing first derivative: the nodal properties of $x(t)$ and $x^{\prime}(t)$ (see [12,13]), the distance between zeros of $x(t)$ and $x^{\prime}(t)$ (see $[14,15]$).

2. Preliminaries: Existence of solution of the reciprocal equation

The basic assumptions on the coefficients $r(t), p(t)$, and $q(t)$ are the following:

$$
\begin{equation*}
r(t)>0, q(t)>0, p^{2}(t) \leq 4 r(t) q(t) \quad \text { and } \quad(-1)^{n} e(t) \geq 0 \text { on }\left[a_{n}, b_{n}\right] \tag{2.1}
\end{equation*}
$$

where $0 \leq t_{0}<a_{1}<b_{1} \leq \cdots \leq a_{n}<b_{n} \leq a_{n+1}<b_{n+1} \leq \cdots, a_{n} \rightarrow \infty$ as $n \rightarrow \infty$. The third inequality in (2.1) is not restrictive because it holds always in undamped case $p(t) \equiv 0$.

We start this section with a fundamental result on the existence of solutions of the first order ode's by sub-super solutions technique.

Lemma 2.1 ([16, Theorem 1.2.1 or Theorem 1.1.4]). Let $F:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Let $\underline{\omega}, \bar{\omega} \in C^{1}([a, b], \mathbb{R})$ be two functions such that $\frac{d \underline{\omega}}{d t} \leq F(t, \underline{\omega})$ and $\frac{\mathrm{d} \bar{\omega}}{d t} \geq F(t, \bar{\omega})$ on (a, b). If $\underline{\omega}(t) \leq \bar{\omega}(t)$ on $[a, b]$ and $\underline{\omega}(a) \leq c_{0} \leq \bar{\omega}(a)$, then there exists a solution $\omega \in C^{1}([a, b], \mathbb{R})$ of the initial value problem $\frac{d \omega}{d t}=F(t, \omega)$ on (a, b) and $\omega(a)=c_{0}$, such that $\underline{\omega}(t) \leq$ $\omega(t) \leq \bar{\omega}(t)$ on $[a, b]$.
On the monotone iterative technique and sub-super solution method for the first order ode's, we refer reader to [17,18, $16,19]$, and references therein.

According to Lemma 2.1 and the assumption (2.1), we derive a sufficient condition for the interval global existence of a solution of the so-called reciprocal linear differential equation:

$$
\begin{equation*}
\left(\frac{1}{q(t)} y^{\prime}\right)^{\prime}-\frac{p(t)}{q(t) r(t)} y^{\prime}+\frac{1}{r(t)} y=0, \quad t \in\left(a_{n}, b_{n}\right), n \in \mathbb{N}, \tag{2.2}
\end{equation*}
$$

which is associated to the main equation (1.1), where $y \in C\left(\left[a_{n}, b_{n}\right], \mathbb{R}\right) \cap C^{2}\left(\left(a_{n}, b_{n}\right), \mathbb{R}\right)$.
Theorem 2.1. Let $f(t, s) s \geq 0$ for all $t \geq t_{0}, s>0$ and (2.1) hold. For every positive solution $x(t)$ of Eq. (1.1) such that $x^{\prime}(t) \neq 0$ on $\left[a_{2 n-1}, b_{2 n-1}\right], \forall n \geq n_{0}$ and some $n_{0} \in \mathbb{N}$, there exists $\omega=\omega(t), \omega \in C^{1}\left(\left[a_{2 n-1}, b_{2 n-1}\right]\right.$, $\left.\mathbb{R}\right)$ which is a solution of equation:

$$
\begin{cases}\frac{d \omega}{d t}=q(t) \omega^{2}+\frac{p(t)}{r(t)} \omega+\frac{1}{r(t)}, & t \in\left(a_{2 n-1}, b_{2 n-1}\right), n \geq n_{0} \tag{2.3}\\ \omega\left(a_{2 n-1}\right)=\frac{x\left(a_{2 n-1}\right)}{r\left(a_{2 n-1}\right) x^{\prime}\left(a_{2 n-1}\right)}, & n \geq n_{0}\end{cases}
$$

Moreover, the function

$$
\begin{equation*}
y(t)=\exp \left(-\int_{a_{2 n-1}}^{t} q(\tau) \omega(\tau) d \tau\right), \quad t \in\left[a_{2 n-1}, b_{2 n-1}\right], n \geq n_{0} \tag{2.4}
\end{equation*}
$$

satisfies the reciprocal equation (2.2) on the intervals $\left(a_{n}, b_{n}\right)$ with odd n.

https://daneshyari.com/en/article/8054430

Download Persian Version:
https://daneshyari.com/article/8054430

Daneshyari.com

[^0]: * Tel.: +385 981809669.

 E-mail address: applied.science.mpasic@gmail.com.
 http://dx.doi.org/10.1016/j.aml.2014.09.002
 0893-9659/© 2014 Elsevier Ltd. All rights reserved.

