ELSEVIER PROPERTY OF THE PROPE

Contents lists available at ScienceDirect

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

Research announcement

Resonant Neumann problems with indefinite and unbounded potential

Nikolaos S. Papageorgiou^a, Vicenţiu D. Rădulescu^{b,c,*}

- ^a National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece
- ^b Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- ^c Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

ARTICLE INFO

Article history:
Received 25 August 2014
Received in revised form 17 September 2014
Accepted 17 September 2014
Available online 28 September 2014

Keywords:
Indefinite and unbounded potential
Reduction method
Resonance
Unique continuation property
Regularity
Critical groups

ABSTRACT

In this paper, we report on some recent results obtained in our joint paper Papageorgiou and Rădulescu (in press). We establish multiplicity properties for a class of semilinear Neumann problems driven by the Laplacian plus on unbounded and indefinite potential. The reaction is a Carathéodory function which exhibits linear growth near $\pm\infty$. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue. The approach combines critical point theory, Morse theory and the Lyapunov–Schmidt method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. Consider the following semilinear Neumann problem:

$$-\Delta u(z) + \beta(z)u(z) = f(z, u(z)) \quad \text{in } \Omega, \qquad \frac{\partial u}{\partial n} = 0 \quad \text{on } \partial\Omega.$$
 (1)

Here $n(\cdot)$ denotes the outward unit normal on $\partial\Omega$. The potential function $\beta(\cdot)$ is in general unbounded and sign changing. More precisely, we assume that $\beta\in L^s(\Omega)$ with s>N. Also, the reaction f(z,x) is a Carathéodory function that exhibits linear growth near $\pm\infty$. We allow for resonance to occur with respect to any nonnegative nonprincipal eigenvalue of $(-\Delta+\beta(\cdot),\ H^1(\Omega))$. So, we assume that asymptotically at $\pm\infty$ the quotient $\frac{f(z,x)}{x}$ is located in the spectral interval $[\hat{\lambda}_m,\hat{\lambda}_{m+1}]$ with $m\geqslant \max\{m_0,2\}$, where $\hat{\lambda}_{m_0}$ is the first nonnegative eigenvalue of $(-\Delta+\beta(\cdot),\ H^1(\Omega))$. Hence, if $\beta\equiv 0$, then $m_0=2$ and so $m\geqslant 2$. We allow resonance with respect to the left end $\hat{\lambda}_m$ and nonuniform nonresonance with respect to the right end $\hat{\lambda}_{m+1}$. Problems with double resonance (that is, possible resonance at both ends of the spectral interval), were studied by O'Regan, Papageorgiou and Smyrlis [1], with $\beta\equiv 0$ (see also Hu and Papageorgiou [2] for Dirichlet problems with $\beta\neq 0$).

^{*} Corresponding author at: Simion Stoilow Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania. Tel.: +40 251412615: fax: +40 251411688.

E-mail addresses: npapg@math.ntua.gr (N.S. Papageorgiou), vicentiu.radulescu@imar.ro, vicentiu.radulescu@math.cnrs.fr (V.D. Rădulescu).

The following linear eigenvalue problem has a central role in the analysis of problem (1):

$$-\Delta u(z) + \beta(z)u(z) = \lambda u(z) \quad \text{in } \Omega, \qquad \frac{\partial u}{\partial n} = 0 \quad \text{on } \partial\Omega.$$
 (2)

This eigenvalue problem was studied by Papageorgiou and Smyrlis [3]. So, suppose that $\beta \in L^{N/2}(\Omega)$ if $N \geqslant 3$, $\beta \in L^{r}(\Omega)$ with r>1 if N=2 and $\beta\in L^1(\Omega)$ if N=1. Let $\tau:H^1(\Omega)\to\mathbb{R}$ be the energy functional defined by

$$\tau(u) = \|Du\|_2^2 + \int_{\Omega} \beta(z)u(z)^2 dz \quad \text{for all } u \in H^1(\Omega).$$

Then the eigenvalue problem (2) has a smallest eigenvalue $\hat{\lambda}_1 > -\infty$ given by

$$\hat{\lambda}_1 = \inf \left[\frac{\tau(u)}{\|u\|_2^2} : u \in H^1(\Omega), \ u \neq 0 \right]. \tag{3}$$

From (3) it follows that we can find $\xi_0 > \max\{-\hat{\lambda}_1, 0\}$ such that

$$\tau(u) + \xi_0 ||u||_2^2 \ge c_1 ||u||^2$$
 for all $u \in H^1(\Omega)$ and some $c_1 > 0$. (4)

Using (4) and the spectral theorem for compact self-adjoint operators (see, for example, Gasinski and Papageorgiou [4, p. 297]), we obtain a sequence $\{\hat{\lambda}_k\}_{k\geqslant 1}$ consisting of all the eigenvalues of (2) such that $\hat{\lambda}_k \to +\infty$ when $k \to \infty$. To these eigenvalues corresponds a sequence $\{\hat{u}_n\}_{n\geqslant 1}\subseteq H^1(\Omega)$ of eigenfunctions which form an orthonormal basis of $L^2(\Omega)$ and an orthogonal basis of $H^1(\Omega)$. Moreover, if $\beta\in L^s(\Omega)$ with s>N, then the regularity results of Wang [5], imply that $\{\hat{u}_n\}_{n\geqslant 1}\subseteq C^1(\overline{\Omega})$. These eigenvalues admit variational characterizations in terms of the Rayleigh quotient $\frac{\tau(u)}{\|u\|_n^2}$ for all

 $u \in H^1(\Omega) \setminus \{0\}$. In what follows, by $E(\hat{\lambda}_k)$, we denote the eigenspace corresponding to the eigenvalue $\hat{\lambda}_k, \ k \geqslant 1$. Throughout this paper, our hypotheses on the potential function $\beta(\cdot)$ are the following:

 $H_0: \beta \in L^s(\Omega)$ with s > N and $\beta^+ \in L^\infty(\Omega)$.

2. Existence of multiple solutions

We assume that the resonance occurs at $\pm \infty$ with respect to any nonnegative nonprincipal eigenvalue of $(-\Delta$ $\beta, H^1(\Omega)$). So, in what follows, $\hat{\lambda}_{m_0}$ denotes the first nonnegative eigenvalue of this operator.

The hypotheses on the reaction term f(z, x) are the following:

 $H_1: f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that f(z,0) = 0 for a.a. $z \in \Omega$ and

(i) there exist an integer $m \ge \max\{m_0, 2\}$ and a function $\eta \in L^{\infty}(\Omega)_+$ such that

$$\eta(z) \leqslant \hat{\lambda}_{m+1}$$
 a.e. in Ω , $\eta \neq \hat{\lambda}_{m+1}$

$$(f(z,x) - f(z,y))(x-y) \leqslant \eta(z)(x-y)^2 \text{ for a.a } z \in \Omega, \text{ all } x, y \in \mathbb{R};$$

- (ii) $\hat{\lambda}_m \leqslant \liminf_{x \to \pm \infty} \frac{f(z, x)}{x}$ uniformly for a.a. $z \in \Omega$; (iii) if $F(z, x) = \int_0^x f(z, s) ds$, then we have

$$\lim_{x \to \pm \infty} [f(z, x)x - 2F(z, x)] = -\infty \quad \text{uniformly for a.a. } z \in \Omega;$$

(iv) there exists a function $\vartheta \in L^{\infty}(\Omega)$ such that

$$\vartheta(z)\leqslant \hat{\lambda}_1 \quad \text{a.e. in } \Omega, \ \vartheta \neq \hat{\lambda}_1$$

$$\limsup_{x\to 0} \frac{2F(z,x)}{x^2}\leqslant \vartheta(z) \quad \text{uniformly for a.a. } z\in \Omega;$$

(v) for every $\varrho > 0$, there exists $\xi_{\varrho} > 0$ such that

$$f(z, x)x + \xi_0 x^2 \ge 0$$
 for a.a $z \in \Omega$, all $|x| \le \rho$.

We observe that hypotheses $H_1(i)$, (ii) imply that asymptotically at $\pm \infty$, the quotient $\frac{f(z,x)}{x}$ is in the spectral interval $[\hat{\lambda}_m, \hat{\lambda}_{m+1}]$ with possible resonance with respect to $\hat{\lambda}_m$ (see $H_1(ii)$), while at the other end we have nonuniform nonresonance

The following function satisfies hypotheses H_1 above. For the sake of simplicity, we drop the z-dependence:

$$f(x) = \begin{cases} \vartheta x + \xi |x|^{p-2} x & \text{if } |x| \le 1\\ \lambda x + \frac{c}{x} & \text{if } 1 < |x|, \end{cases}$$

with $\vartheta < \hat{\lambda}_1, p > 2, \xi = \lambda + c - \vartheta, \lambda \in [\hat{\lambda}_m, \hat{\lambda}_{m+1})$ for some integer $m \ge \max\{m_0, 2\}, c > 0, 2c < \lambda$.

Download English Version:

https://daneshyari.com/en/article/8054446

Download Persian Version:

https://daneshyari.com/article/8054446

<u>Daneshyari.com</u>