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a b s t r a c t

Many experimental systems in biology, especially synthetic gene networks, are amenable
to perturbations that are controlled by the experimenter. We developed an optimal
design algorithm that calculates optimal observation times in conjunction with optimal
experimental perturbations in order to maximize the amount of information gained from
longitudinal data derived from such experiments. We applied the algorithm to a validated
model of a synthetic Brome Mosaic Virus (BMV) gene network and found that optimizing
experimental perturbations may substantially decrease uncertainty in estimating BMV
model parameters.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Recent efforts in modeling the host immune response to HIV infection have illuminated the relationship between
perturbations that drive biological systems away from equilibrium and information content in data measured from such
systems [1,2]. For example, the HIV model developed by Banks, et al. [3,4] describes how anti-retroviral therapy (ART)
drives viral load in patients toward an equilibrium level that is undetectable, even by ultra-sensitive assays. When ART
is interrupted, e.g., due to patient non-adherence, the HIV model converges toward an equilibrium with high viral load.
Indeed, these are the dynamics observed in clinical patient data [4]. Banks, et al. fit their HIV model to clinical patient data
and exhibited that the number of HIV model parameters that could be estimated with high statistical confidence increased
with the number of treatment interruptions [2]. Thus, non-equilibrium dynamics, induced by ART perturbations, increased
the data information content as calculated through asymptotic standard errors for estimated model parameters.

We hypothesized that this positive relationship between information content and system perturbations may exist
for more general mathematical models and in particular for models describing biological networks. To investigate this
relationship, we employed an optimal experimental design theory framework [5–7] to develop an algorithm thatminimizes
parameter standard errors by choosing optimal perturbations to experimental inputs. Specifically, we describe how
the algorithm for optimizing selection of observation times can be extended to include optimization of experimentally
controlled perturbations in order to produce data sets with maximal information content. Although we do not propose
intentional perturbations in a clinical setting with patients, such a framework could be useful for gaining information from
in vitro experiments where there may exist limitations on the number of observable states and observation times.

A particularly useful application of our algorithm involves interrogation of genetic networks. Data from genetic networks
can be collected by measuring longitudinal gene expression, either pre- or post-translational, from in vitro cell lines.
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Table 1
BMV model results for naive time points and naive inputs (A), optimized time points and naive inputs for D-, E-, and SE-optimal
designs (B-D through B-SE), or naive time points and optimized inputs for D-, E-, and SE-optimal designs (C-D through C-SE). NSE
= normalized standard error.

Parameter ry dy dz m s
Estimate 31.641 0.7562 0.3139 0.5557 1.2374

NSE (A) 0.2223 0.6651 0.1947 2.9583 0.4318
95% CI (A) (17.8575,45.4245) (−0.22964,1.742) (0.19414,0.43366) (−2.6663,3.7777) (0.19025,2.2846)
NSE (B-D) 0.1632 0.5402 0.1444 2.0333 0.3385
95% CI (B-D) (21.52,41.762) (−0.0445,1.5569) (0.22508,0.40272) (−1.6589,2.7703) (0.41635,2.0584)
NSE (B-E) 0.1526 0.5152 0.1356 1.9022 0.3218
95% CI (B-E) (22.1797,41.1023) (−0.0074757,1.5199) (0.2305,0.3973) (−1.5161,2.6275) (0.45694,2.0179)
NSE (B-SE) 0.1482 0.5032 0.1329 1.8226 0.3256
95% CI (B-SE) (22.4505,40.8315) (0.010449,1.502) (0.23214,0.39566) (−1.4294,2.5408) (0.44772,2.0271)
NSE (C-D) 0.0744 0.0820 0.0940 0.3082 0.0454
95% CI (C-D) (27.0296,36.2524) (0.63472,0.87768) (0.25607,0.37173) (0.22,0.8914) (1.1273,1.3475)
NSE (C-E) 0.0519 0.1669 0.0587 0.3471 0.0770
95% CI (C-E) (28.4206,34.8614) (0.50884,1.0036) (0.2778,0.35) (0.17765,0.93375) (1.0507,1.4241)
NSE (C-SE) 0.0607 0.0813 0.0643 0.2981 0.0530
95% CI (C-SE) (27.8745,35.4075) (0.63564,0.87676) (0.27431,0.35349) (0.23107,0.88033) (1.1089,1.3659)

Importantly, there are also several methods for experimentally perturbing in vitro gene expression at the pre- and
post-transcriptional levels [8,9]. We recently estimated kinetic parameters for a model of a synthetically constructed gene
network for the recruitment module of the Brome Mosaic Virus replication cycle [10,11]. In the BMV synthetic system,
gene expression is tuned by the concentration of experimentally controlled chemicals. Here, we report how optimization
of the experimentally controlled inputs (chemicals) for the BMV system can lead to more informative experiments, and
thereby dramatically decrease standard errors for estimated model parameters, i.e., reduce dramatically the uncertainty in
estimating model parameters.

2. Data and methods

2.1. Mathematical models, statistical models, and parameter uncertainty quantification

In this note, we formulate an optimal design framework for experimental systems with a scalar time-dependent input
b(t). In practice, b(t) is assumed to be known since it is controlled by the experimenter.

The mathematical model we consider is

dx⃗
dt

= g⃗(t, x⃗(t; θ⃗ , b(t)), q⃗, b(t)), t ∈ [t0, tf ],

x⃗(t0, θ⃗ ) = x⃗0, f⃗ (t, θ⃗ , b(t)) = Cx⃗(t, θ⃗ , b(t))
(1)

where x⃗(t, θ⃗ ) is the vector of state variables of the system generated using a parameter vector θ⃗ = (x⃗0, q⃗) ∈ Rp, p = N + r ,
that contains N initial values and r system parameters listed in q⃗. The map g⃗ : R1+N+r

→ RN has the corresponding
observation process f⃗ (t, θ⃗ , b(t)) = Cx⃗(t, θ⃗ , b(t))with observation operator C that connects the model solution to observed
data. Here,C is aK×N matrix,whereK ≤ N is allowed. The times t0 and tf are initial and final experiment times, respectively.
To illustrate the inverse problem methodology, we use a constant i.i.d statistical error model, although more general error
formulations can be readily derived and treated. Further statistical details, including a description of the associated K × K
covariance matrix V0, can be found in [12]. In this work we consider the simple case where b(t) can be described as a binary
vector b⃗ of length H , with values in {0, 1} that represent whether the experimental input is on or off in the time intervals
[tbi−1, t

b
i ], i = 1, . . . ,H .

For a given member θk of the estimated parameter vector θ⃗ the standard error (SEk) is computed by standard methods
fromasymptotic theory. For Tables 1 and 2, the normalized standard error (NSE) is defined as θk

SEk
; the 95% confidence interval

(CI) is given by [θk − 1.96SEk, θk + 1.96SEk] (see [12] for details).

2.2. Optimal design measures

We follow the optimal design formulation using the Generalized Fisher Information Matrix [5–7]. Let P1([t0, tf ]) denote
the set of all bounded distributions on the interval [t0, tf ]. Let B = ZH

2 , the set of binary vectors b⃗ of length H that represent
the input perturbation b(t). Let P2(B) represent the set of all bounded distributions P2(b) on B. Then the GFIM may be
written as

F (P1, P2, θ⃗0) =

 tf

t0


ZH
2

∇
T
θ⃗0
f⃗ (t, θ⃗0, b(t))


V−1
0 (t)


∇θ⃗0

f⃗ (t, θ⃗0, b(t))dP2(b)dP1(t). (2)
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