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a b s t r a c t

We study phase field equations in perforated domains for arbitrary free energies. These
equations have found numerous applications in a wide spectrum of both science and en-
gineering problems with homogeneous environments. Here, we focus on strongly hetero-
geneous materials with perforations such as porous media. To the best of our knowledge,
we provide the first derivation of upscaled equations for general free energy densities. In
view of the versatile applications of phase field equations, we expect that our study will
lead to new modelling and computational perspectives for interfacial transport and phase
transformations in strongly heterogeneous environments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction: phase field formulation in heterogeneous media

Our starting point is thewidely accepted diffuse-interface formulation [1] describing the dynamics of interfaces between
different phases. This formulation captures different thermodynamic states of a system by a continuous macroscopic
variable obtained from averagedmicroscopic degrees of freedom. Such amacro variable represents a locally conserved order
parameter, denoted as φ, which defines different phases as local equilibrium limiting values of a free energy associated with
the system under consideration.

Diffuse interface formulations show a high versatility which is further extended due to increasing computational power.
This leads continuously to new and increasingly complex scientific and engineering applications such as more realistic
descriptions for the computation of transport in porous media [2] which represents a high-dimensional multiscale problem
with many numerical challenges [3]. Our main result here is the systematic and general derivation of effective macroscopic
equations which reliably account for multiple phases invading strongly heterogeneous environments such as porous
materials.

The physical basis of the diffuse interface formulation relies on the following class of abstract energy densities:

e(φ) :=
1
λ
F(φ)+

λ

2
|∇φ|

2 . (1)
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Fig. 1. Left: Strongly heterogeneous/perforated material as a periodic covering of reference cells Y := [0, ℓ]d . Top, middle: Definition of the reference cell
Y = Y 1

∪ Y 2 with ℓ = 1. Right: The ‘‘homogenization limit’’ ϵ :=
ℓ
L → 0 scales the perforated domain such that perforations become invisible on the

macroscale.

The free energy density F defines equilibrium phases φi, i = 1, 2, . . . ,M as M ∈ N local minima and the gradient term
λ
2 |∇φ|

2 penalizes the interfacial area between these equilibrium phases. In thermodynamic contexts, F represents the
(Helmholtz) free energy density F(φ) := U − TS, where U is the internal energy, T is the temperature, and S is the entropy.
Popular examples include the energy of regular solutions (also known as the Flory–Huggins energy [4]). The regular solu-
tion theory plays a crucial role in many important applications such as ionic melts [5], water sorption in porous solids [6],
and micellization in binary surfactant mixtures [7]. In addition, wetting phenomena, often studied using classical sharp-
interface approximations, e.g. [8], are also described by phase-field equations [9–11] which have been extended to include
electric fields (so-called electrowetting, e.g. [12]). This energy-functionals based framework has also been applied in image
processing such as inpainting, see e.g. [13].

In a previous study [14], we focused on a specific form of the homogeneous free energy density andwe recently extended
it towards Stokes flow [15]. Here, we provide an upscaling for H−1-gradient flows of arbitrary free energy densities based
on a Taylor expansion of the free energy density at the effective upscaled solution. Before we can state our main result, we
formulate the basic setting to study general interfacial dynamics.

(a) Homogeneous domains Ω . The total (Ginzburg–Landau/Cahn–Hilliard) energy is defined by E(φ) :=

Ω
e(φ) dx

with density (1) on a bounded domainΩ ⊂ Rd with smooth boundary ∂Ω and 1 ≤ d ≤ 3 denotes the spatial dimension. It
is well accepted that thermodynamic equilibrium can be achieved by minimizing the energy E supplemented by a possible
wetting boundary contribution


∂Ω

g(x) dx for g(x) ∈ H3/2(∂Ω). Mass conservation for this minimization can be generally
achieved with a H−1-gradient flow associated to E(φ), i.e.,

(Homogeneous case)
∂

∂t
φ = div


M̂∇


1
λ
f (φ)− λ∆φ


inΩT , (2)

together with the boundary conditions ∇nφ := n · ∇φ = g(x) on ∂ΩT , and ∇n∆φ = 0 on ∂ΩT , where ΩT := Ω×]0, T [,
∂ΩT := ∂Ω×]0, T [, φ satisfies the initial condition φ(x, 0) = ψ(x), and M̂ =


mij

1≤i,j≤d denotes a mobility tensor with

real and bounded elements mij > 0. This equation serves as a prototype for interfacial dynamics [e.g. [16]] and phase trans-
formation [e.g. [1]] under homogeneous Neumann boundary conditions, i.e., g = 0, and free energy densities F .

(b)Heterogeneous/perforateddomainsΩϵ . Ourmain focus concentrates on (1) in a perforated domainΩϵ
⊂ Rd instead

of a homogeneous Ω ⊂ Rd. The parameter ϵ =
ℓ
L > 0 is called heterogeneity where ℓ represents the characteristic pore

size and L is the macroscopic length of the porous medium, see Fig. 1. Herewith, we can define the porous medium by a
reference pore/cell Y := [0, ℓ1] × [0, ℓ2] × · · · × [0, ℓd]. For simplicity, we set ℓ1 = ℓ2 = · · · = ℓd = 1. The pore (Ωϵ) and
the solid phase (Bϵ) are defined by

Ωϵ
:=


z∈Zd

ϵ

Y 1

+ z

∩Ω, Bϵ :=


z∈Zd

ϵ

Y 2

+ z

∩Ω = Ω \Ωϵ, (3)

where the subsets Y 1, Y 2
⊂ Y are such thatΩϵ is a connected set. The set Y 1

⊂ Y represents the pore phase (e.g. liquid or
gas phase inwetting problems), see Fig. 1. Herewith, we can rewrite (2) as the followingmicroscopic porousmedia problem:

(Micro-pore equation)

∂tφϵ = div


M̂∇


−λ∆φϵ +

1
λ
f (φϵ)


inΩϵ

T , (4)

with the boundary (∇nφϵ := n · ∇φϵ = 0 on ∂Ωϵ
T , ∇n∆φϵ = 0 on ∂Ωϵ

T ) and initial (φϵ(x, 0) = ψ(x) onΩϵ) conditions.
Our main objective is the derivation of a systematic and reliable homogenized/upscaled phase field formulation valid for



Download	English	Version:

https://daneshyari.com/en/article/8054501

Download	Persian	Version:

https://daneshyari.com/article/8054501

Daneshyari.com

https://daneshyari.com/en/article/8054501
https://daneshyari.com/article/8054501
https://daneshyari.com/

