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1. Introduction

The 2D generalized liquid crystal model reads:

U +u-Vu+ Vp+ A®u=—Vd- Ad, (1.1)
d; +u-Vd+ A*d = —f(d), (1.2)
V-u=0, (13)
(u, d)(x, 0) = (uo, do)(x), (1.4)

where u(x, t) € R? is the velocity field, d(x, t) € R? is a vector field modeling the orientation of the crystal molecules pis

a scalar pressure, while @ > 0, 8 > 0 are real parameters. f(d) == (|d)?> — 1)d and the operator A = (— A)z is defined by
Af (&) = |&If(&); here f denotes the Fourier transform of f. We identify the case o« = 0 as the 2D generalized liquid crystal
model with zero velocity diffusion. When o« = 0, 8 = 1, the system is a simplified version of the Ericksen-Leslie system
modeling the hydrodynamics of nematic liquid crystals developed during the period of 1958 through 1968 [1-3]. We notice
thatif d = 0, « = 1, then system (1.1)-(1.4) becomes to the Navier-Stokes equations. So, to study system (1.1)-(1.4) is
valuable and interesting in both mathematical and physical sense.

Now, we mention some known results about the system. When«o = 8 = 1, the existence and uniqueness of the weak and
smooth solutions for system (1.1)-(1.4) is given in [4-6]. Local existence of classical solutions for the nematic liquid crystal
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flows was established in [7]. Later, Zhou established a regularity criterion for it as fOT %dt < 4oo with % + % =2,
2 < p < 3in[8]. Recently, in [9], Fan, Nakamura and Zhou established global regularity for this system with mixed partial
viscosity. The global strong solution to the density-dependent 2D liquid crystal flows was studied in [10]. Moreover, some
regularity criteria are proved for the system with zero dissipation in [11].

This paper focuses on the system with « = 0, 8 > 1. From the study of the 2D incompressible generalized MHD equa-
tions (refer [12-15]), we know that to give the global wellposedness of classical solution for the system witha =0, 8 > 1
is difficult and important. Our main result is the following global regularity criteria.

Theorem 1.1. Assume« = 0, 8 > 1, and (up, do)(x) € H*(R?) x H3(R?), then the 2D liquid crystal model (1.1)~(1.4) has a
unique global classical solution (u, d)(x, t) satisfying

u € L0, T; H*(R%)),

d € [®(0, T; H}(R?), d € [*(0, T; H**# (R?)).

Remark 1.1. Theorem 1.1 is partially motivated by the recent works on 2D incompressible generalized MHD equations
and the liquid crystal model (refer [12-16] for details). To establish global regularity criteria for system (1.1)-(1.4) with
a >0, B =1ora+ B > 1are open problems, and these are also our further work.

Now, we list some notations that will be used in our paper. We use the concise notations LP-? and 9; to denote the spaces
1P (0, T; L1(R?)) for the fixed positive number T and the partial derivative to the ith space variable respectively. Throughout
this paper, C denotes a generic positive constant (generally large); it may be different from line to line. Use f to denote the
Fourier transform of f.

2. Key lemmas

Before giving the proof of our main theorem, we give two lemmas which are crucial in the proof of our theorem. First, let
us consider the following equation:
v+ APy =, (2.1)
v(x, 0) = vo(x). (2.2)
Similar to the heat equation, we get

1 [x—y t _1 X—y
v(x, t) = / t Fh ( . ) vo(y)dy —|—/ / (t—s) Ph <1>f(y, s)dyds, (2.3)
R? t2F o Jr2 (t—s)%

where h(x) = (e*"‘zﬁ)v(x). Now, we give some estimation for h. As a direct calculation we can deduce the following 2
estimation for Vh.

Lemma 2.1. Forany 8 > 0, we have

VAl =C, (2.4)
where C is a positive constant which only depends on S.
Proof.
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Here I'(s), s > 0 is the Gamma Function. O
The following lemma is proved in [15].
Lemma 2.2 ([15]). Let | be a nonnegative integer and n > 0, then

IV'hllg + ARl < C, (2.5)

where C is a positive constant.

3. Proof of Theorem 1.1

First, we give the following priori estimates.
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