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A stochastic analysis of a nonlinear flow response
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Abstract

In this article a stochastic analysis of velocity fluctuations from a nonlinear flow response is presented. The statistical analysis is based on
probability averages of the flow quantities evaluated over several realizations of the examined turbulent flow. In order to define the realizations, a
long-time record of a turbulent velocity signal is cut up into pieces of length T , where T is much longer than the characteristic velocity fluctuation
correlation time occurring in the flow. These pieces are then treated as observations of different responses in an ensemble of similarly simulated
flows. The ergodic assumption is investigated, and it is shown that in some regions of the flow the standard statistical approach of time average
fails to capture the nonlinear response of the flow. The ergodicity deviations based on samples from three-dimensional numerical simulations are
compared with theoretical predictions given by scaling arguments and also with data from experimental observations. A very good agreement is
observed. Calculations of the normalized auto-correlation functions and power spectra are also performed.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In a general case a formal statistical treatment is based on
probability averages evaluated over an ensemble of several
realizations of the same process, which defines a stochastic
set. For an ergodic process the probability average can be
replaced by the conventional time average, and the statistical
analysis is more feasible. Nevertheless, when the turbulence is
dominated by large and coherent structures, typically strongly
correlated, the ergodic hypothesis cannot be assumed and only a
probability or statistical average (i.e. ensemble averages) should
be used to describe the statistical quantities of the flow [1,2].
In a numerical simulation context, the total time of simulation
needs to be long enough to ensure the ergodicity of the process
or to lead a convergence of the statistics. In a multiple scale flow
like turbulence this total time may be different for each region
in the domain.

The purpose of this paper is to perform a statistical
analysis of turbulent velocity fluctuations resulting from
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three-dimensional large eddy numerical simulations and
experimental observations of the same flow explored in the
simulations. In addition, the integral timescales and the ergodic
character of the nonlinear flow response are evaluated. A
scaling analysis is also developed in order to estimate the
deviation ε between the time average and probability average
associated with the ergodicity assumption. The nonlinear
response of the flow striking a cube mounted over a flat plate
is used to investigate the long time statistics in order to quantify
the velocity fluctuation correlation time at different positions
on the flow domain. The numerical and experimental results
are confronted with the statistics given by a temporal analysis
and the deviation between the two approaches characterized by
the ergodic parameter, ε predicted by a scaling analysis. All
statistical quantities are calculated using the probability average
approach and the associated error bars are shown.

1.1. Scalings

The scales of the large eddies are set by the geometry and
the speed of the stirring mechanism, while cut-off scales of the
small eddies are determined by the action of viscosity. Here one
concentrates on the small scales for a flow with large eddies of
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given velocity, length and time scales U`, `, T`. The important
Kolmogorov micro-scale for the smallest eddies is based on a
further assumption that the smallest eddies depend only on the
rate at which energy is put into the large eddies, i.e. on one
particular combination of U`, `. The friction only acts on the
smallest scale and the energy is supplied only at the large scale.
The rate of dissipation ε = 2νD′

: D′ is measured per unit
of mass, and can be related to the macro-scales by assuming
that a significant fraction of the kinetic energy per unit of mass
k = (1/2)u′ · u′ in the large eddies is dissipated in the turnover
time of the large eddies, i.e. per unit time

ρε = ρU 2
` /T`, therefore ε = U 3

` /`. (1)

Here u′
= u − ũ denotes the velocity fluctuations, u is the

instantaneous velocity, ũ is the average velocity and D′ is the
shear rate fluctuation tensor defined in terms of the velocity
fluctuations, i.e. 2D′

= (∇u′
+∇(u′)T), where the T denotes the

transpose operation. Now, the dimensions of this dissipation per
unit mass ε are L2T −3, while the dimensions of the kinematic
viscosity ν are L2T −1. Hence by a simple dimensional analysis,
we obtain the velocity, length, time and strain-rate scalings
of the Kolmogorov micro-scale [3]: Uk = (νε)1/4, `k =

(ν3/ε)1/4, Tk = (ν/ε)1/2 and Sk = (ε/ν)1/2. Introducing the
Reynolds number of the large scale eddies Re = U``/ν, one
obtains

Uk/U` = Re−1/4, `k = `Re−3/4,

Tk = T`Re−1/2, Sk = S`Re1/2.
(2)

The Kolmogorov micro-scale for the smallest eddies depends
on the velocity and length scales of the large eddies in the
combination ε = U`/`. Note the turnover time of the smallest
eddies Tk is shorter than the turnover time of the large eddies
T` by the fact Re−1/2. Hence mixing takes place faster and
more efficiently on small scales than on large scales. Large
scale mixing however is described by the Taylor diffusivity
D = U` `. So, for a container of height H , the time for eddy
diffusion is then H2/D = T` H2/`2 [4].

A second micro-scale, the Taylor micro-scale, uses a
different combination to yield a slightly larger scale. The
Taylor micro-scale λτ can be thought of as the boundary layer
thickness on the edge of a large eddy, i.e.

λτ = (νt)1/2 (3)

with t being the turnover time of the large eddies T` = `/U`.
Hence, using the Reynolds number of the large eddies we can
show λτ = (ν`/U`)

1/2
= `Re−1/2.

2. Statistical analysis

The main goal of this work is to treat statistically
turbulent velocity signals both from numerical simulations and
experimental observations. An important question addressed
here is to look at how long a time average is necessary to obtain
well converged statistical results. To this end, we have looked
at the difference between the time average and an ensemble
average as the measure of this convergence.

The flow is considered a stochastic process given by a family
of functions u = u(t, α), where α = 1 . . . N are the realizations
of the process. For a stationary random process then, we may, in
principle at least, determine the various probability distributions
from the observations of u(t) for one realization of the system
over a long period of time. This long-time record can be cut
up into pieces of length T (where T is much longer than any
periodicities occurring in the process), and these pieces may be
treated as observations of different realizations of the system
in an ensemble of similarly prepared systems. The underlying
assumption here is the so-called ergodic assumption [5], which
states that for a stationary random process, a large number of
observations made on a single system at N arbitrary instants
of time have the same statistical properties as observing N
arbitrarily chosen systems at the same time from an ensemble
of similar systems. In dealing with a general stochastic process,
there are two types of mean values that can be evaluated. One is
the probability average obtained by a number sufficiently larger
(N ) of observations at some fixed time t , denoting this average
by 〈u(t)〉, and the other is the time average made for a function
u(t), denoting this average by u(α). In the case of a stationary
ergodic random process, both averages yield the same result. A
time average u(α) over a sufficiently long realization αo of the
process is defined as [6]

u(αo) = lim
T →∞

1
T

∫ T

0
u(t, αo)dt. (4)

For the method of averaging defined in equation Eq. (4) to have
any significance, it is necessary that the limit exists and that it
be independent of the definition of the time T . For a stationary
random process, this condition is in fact satisfied.

Now, whether each realization has the same probability to
occur, a statistical (or probability) average is defined as being
[7]

〈u(t)〉 = lim
N→∞

1
N

N∑
α=1

u(t, α). (5)

According to ergodic assumption the time average thereby
obtained is the same with the probability average (5), provided
that the function u is finite and continuous in mean-square [8].

A fluctuation about the probability average, is defined as
being u′(t) = u(t)−〈u〉. The variances (or the turbulent kinetic
energy (1/2)〈u′2

〉) are calculated from the probability average
as well as the time average. We therefore use the following
expression

〈u′2(t)〉 = lim
N→∞

1
N

N∑
α=1

[u(α, t) − 〈u(t)〉]2 (6)

for calculating the probability average of the square of the
velocity fluctuation. While the time average of the square of
the velocity fluctuations is evaluated by

u′2
= lim

T →∞

1
T

∫ T

0
u′2(t)dt. (7)
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