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a b s t r a c t

In this work, we discuss the stability conditions for a nonlinear fractional-order hyper-
chaotic system. The fractional-order hyperchaotic Novel and Chen systems are introduced.
The existence and uniqueness of solutions for two classes of fractional-order hyperchaotic
Novel and Chen systems are investigated. On the basis of the stability conditions for
nonlinear fractional-order hyperchaotic systems, we study synchronization between the
proposed systems by using a new nonlinear control technique. The states of the fractional-
order hyperchaotic Novel system are used to control the states of the fractional-order hy-
perchaotic Chen system. Numerical simulations are used to show the effectiveness of the
proposed synchronization scheme.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, differential equationswith fractional order have attractedmany researchers because of their useful appli-
cations in many fields such as physics [1], engineering [2,3], mathematical biology [4,5], finance [6] and social sciences [7].
Meanwhile, chaos is one of the most fascinating phenomena to have been extensively studied and developed by scien-
tists. Chaos has also useful applications like chaos synchronization, which has attracted particular interest in the past few
years [8]. Recently, chaos synchronization has been shown to have potential applications in chemical reactors [9], biological
networks [10], artificial neural networks [11] and secure communications [12].

Lyapunov exponents are measures that quantify the chaotic behaviors. A regular chaotic system has one positive Lya-
punov exponent. However, a system with more than one positive Lyapunov exponent is called ‘‘hyperchaotic’’. Thus, the
hyperchaotic system has more complex behaviors and abundant dynamics than the chaotic system, so the hyperchaotic
system has more applications than the chaotic system especially in secure communications [13]. Thus, fractional-order hy-
perchaotic systems are more promising for applications in secure communications. Recently, some fractional-order hyper-
chaotic systems have been investigated, such as the fractional-order hyperchaotic Rössler system [14], the fractional-order
hyperchaotic Chen system [15] and the fractional-order hyperchaotic Novel system [16].

In this Letter, we introduce a new nonlinear control scheme for achieving synchronization between the fractional-order
hyperchaotic Novel system and the fractional-order hyperchaotic Chen system; the fractional-order hyperchaotic Novel
system is used to drive the fractional-order hyperchaotic Chen system. The proposed hyperchaotic systems and technique
have possible applications in modeling fractional-order hyperchaotic circuits; see for example Refs. [17,18].
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2. Fractional calculus

One of the most common definitions of fractional derivatives is the Caputo definition [19]:

Dα f (t) = Im−α f (m)(t), α > 0, (1)

where m is the least integer which is not less than α, and Iβ is the Riemann–Liouville integral operator of order β which is
described as follows:

Iβg(t) =
1

Γ (β)

 t

0
(t − τ)β−1g(τ )dτ , β > 0, (2)

where Γ (β) is Euler’s Gamma function. The operator Dα is generally called the ‘‘Caputo differential operator of order α’’.
Consider the initial value problem

DαX(t) = f (t,X(t)), 0 ≤ t ≤ T , X(k)(0) = X(k)
0 , k = 0, 1, . . . ,m − 1. (3)

Theorem 1 (Existence [20]). Assume that E := [0, χ∗
] × [X(0)

0 − ε,X(0)
0 + ε] with some χ∗ > 0 and some ε > 0, and let the

function f : E → R be continuous. In addition, let χ := min{χ∗, (εΓ (α+1)/ ∥f ∥∞)1/α}. Then, there exists a function X : [0, χ]

→ R solving the initial value problem (3).

Theorem 2 (Uniqueness [20]). Suppose that E := [0, χ∗
] × [X(0)

0 − ε,X(0)
0 + ε] with some χ∗ > 0 and some ε > 0. Moreover,

let the function f : E → R be bounded on E and satisfy a Lipschitz condition with respect to the second variable, i.e. |f (t,X)−
f (t, Υ )| ≤ L |X − Υ | with some constant L > 0 independent of t, X and Υ . Then, defining χ as in Theorem 1, there exists at
most one function X : [0, χ] → R solving the initial value problem (3).

The local stability of the equilibrium points of a linear fractional-order system is governed by the following results of
Matignon [21]:

|arg(λi)| > απ/2, (i = 1, 2, 3, 4), (4)

where λ1, λ2, λ3, λ4 are the eigenvalues of the equilibrium points. Now, consider the following nonlinear fractional-order
hyperchaotic system:

DαX(t) = f (X(t)), X = X0 (5)

where X(t) = (x1, x2, x3, x4)T ∈ R4, f : R4
→ R4 is a nonlinear vector function in terms of X. For a small perturbation δ

around the equilibrium point X∗, system (5) can be given as

DαX(t) = J(X∗)X + g(X∗),

where J(X∗) =


∂ fi
∂xj


ij


X=X∗

is the Jacobian matrix evaluated at the equilibrium point X∗
= (x∗

1, x
∗

2, x
∗

3, x
∗

4), and g(X∗) is a

continuous nonlinear function. Hence, we have the following lemma:

Lemma 1. The equilibrium point X∗
= (x∗

1, x
∗

2, x
∗

3, x
∗

4) of the nonlinear system (5) is locally asymptotically stable if all the
eigenvalues (λ1, λ2, λ3, λ4) of the Jacobian matrix J satisfy the conditions (4).

Proof. Consider the four-dimensional nonlinear autonomous fractional-order hyperchaotic system

Dαx1(t) = f1(x1, x2, x3, x4), Dαx2(t) = f2(x1, x2, x3, x4), Dαx3(t) = f3(x1, x2, x3, x4),
Dαx4(t) = f4(x1, x2, x3, x4).

(6)

Let xi(0) = xi0 be the initial values of system (6); then putting xi(t) = x∗

i + δi(t), we get

Dα(x∗

i + δi) = fi(x∗

1 + δ1, x∗

2 + δ2, x∗

3 + δ3, x∗

4 + δ4), i = 1, 2, 3, 4

which leads toDαδi(t) = fi(x∗

1+δ1, x∗

2+δ2, x∗

3+δ3, x∗

4+δ4).Using the Taylor expansion and the fact that fi(x∗

1, x
∗

2, x
∗

3, x
∗

4) = 0,
we have

Dαδi(t) ≈
∂ fi
∂xj


x=x∗

δj, j = 1, 2, 3, 4

which reduces to the following system:

Dαδ = Jδ, δ = (δ1, δ2, δ3, δ4)
T , (7)

where J(X∗) satisfies the relation B−1JB = C, C = diag(λ1, λ2, λ3, λ4), and B is the eigenvector of J . System (7) has the
initial values

δ1(0) = x1(0) − x∗

1, δ2(0) = x2(0) − x∗

2, δ3(0) = x3(0) − x∗

3, δ4(0) = x4(0) − x∗

4.
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