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a b s t r a c t

This letter deals with the identification problem of a class of linear-in-parameters
output error moving average systems. The difficulty of identification is that there exist
some unknown variables in the information vector. By means of the auxiliary model
identification idea, an auxiliarymodel based recursive least squares algorithm is developed
for identifying the parameters of the proposed system. The simulation results confirm the
conclusion.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, various parameter estimation algorithms have been studied for linear systems [1–4] and nonlinear
systems [5–7], and are important in signal processing and filtering [8,9], adaptive control [10] and system identification.
Many identification methods have been reported, e.g., the errors-in-variables methods [11,12], the key term separation
based methods [13,14]. The least squares methods can be roughly divided into two categories. One is the iterative
methods for solving matrix equations [15] and for offline identification, and the other is the recursive methods for online
identification. Recently, new least squares based parameter estimation algorithms have been widely explored for system
identification. For example, Hu and Ding presented an iterative least squares estimation algorithm for controlled moving
average systemsbased onmatrix decomposition [16,17]; Li et al. proposed amaximum likelihood least squares identification
method for Hammerstein finite impulse response moving average systems [18]; Wang et al. developed a data filtering
based least square algorithm for Hammerstein systems [6] and CARARMA systems [19]; Ding proposed a novel coupled
least squares algorithm for estimating the parameters of the multiple linear regression models [20].

The auxiliary model identification idea can be used for studying identification problems in the presence of some
unknown variables in the information vector of the identification model [21]. Ding and Chen presented a dual-rate system
identification method using the auxiliary model to estimate the unknown noise-free output of the system, and directly to
identify the parameters of the underlying fast single rate model from dual-rate input–output data [22,23]. Ding proposed
a combined state and least squares parameter estimation algorithm for canonical state space systems [24], a hierarchical
multi-innovation stochastic gradient algorithm forHammerstein nonlinear systems [25] and a two-stage least squares based
iterative algorithm for CARARMA systems [26].
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Fig. 1. A class of linear-in-parameters output error moving average systems.

The object of this letter is, by means of the auxiliary method, to derive an auxiliary model based recursive least squares
algorithm for identifying a class of linear-in-parameters output error moving average systems based on the available
input–output data.

This letter is organized as follows. Section 2 introduces a class of linear-in-parameters output error moving average
systems and derives its identificationmodel. Section 3 proposes an auxiliary model based recursive least squares algorithm.
Section 4 provides an illustrative example. Finally, conclusions are given in Section 5.

2. Problem formulation

Let us define some symbols. The symbol In denotes an identity matrix of order n; 1n denotes an n-dimensional column
vector whose elements are 1; the superscript T denotes the matrix/vector transpose.

Consider the following stochastic system shown in Fig. 1 [1]:

y(t) =
f (ϑ, u(t), z)

A(z)
+ D(z)v(t), (1)

where {u(t)} is the system input sequence, {y(t)} is the system output sequence, {v(t)} is the stochastic white noise with
zero mean and variance σ 2, A(z) and D(z) are polynomials, of known orders (na, nd), in the unit backward shift operator
z−1, and defined by

A(z) := 1 + a1z−1
+ a2z−2

+ · · · + anaz
−na ∈ R,

D(z) := 1 + d1z−1
+ d2z−2

+ · · · + dndz
−nd ∈ R,

and w(t) := D(z)v(t) is referred to as a moving average process. Assume that f (ϑ, u(t), z) is a linear function with the
parameter vector ϑ ∈ Rnb , and can be expressed in a least squares form as

f (ϑ, u(t), z) := ϑTη(u(t), u(t − 1), . . . , u(t − nb + 1)),

which is denoted simply by

f (ϑ, u(t), z) = ϑTη(u(t), z, nb),

where η(u(t), z, nb) := η(u(t), u(t−1), . . . , u(t−nb+1)) is the linear or nonlinear vector of u(t), u(t−1), . . ., u(t−nb+1).
In this case, the system in (1) can be equivalently written as [27]

y(t) =
ϑTη(u(t), z, nb)

A(z)
+ D(z)v(t). (2)

Without loss of generality, assume that u(t) = 0, y(t) = 0 and v(t) = 0 as t 6 0.

Remark 1. It is worth noting that the systems in (2) may be linear systems or nonlinear systems. For example, for the linear
system

y(t) =
B(z)
A(z)

u(t) + D(z)v(t),

B(z) := b1z−1
+ b2z−2

+ · · · + bnbz
−nb ,

(3)

we let ϑ := [b1, b2, . . . , bnb ]
T

∈ Rnb and η(u(t), z, nb) := [u(t), u(t − 1), . . . , u(t − nb + 1)]T, and have f (ϑ, u(t), z) =

B(z)u(t) = ϑTη(u(t), z, nb). For

f (ϑ, u(t), z) = ϑ1 sin(u(t)) + ϑ2 cos2(u(t − 1)) + · · · + ϑnb
3

u2(t − nb + 1).

Eq. (1) is a nonlinear system but is a linear-in-parameters system. Notice that as D(z) = 1, system (3) reduces to an output
error system.

In this letter, we intend to develop a new identification algorithm for estimating the parameter vector ϑ and the
parameters of A(z) and D(z) in model (1) by utilizing measured input–output data {u(t), y(t) : t = 1, 2, . . .}.
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