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Estimating maize (Zea mays L.) yields at the field level is of great interest to farmers, service

dealers, and policy-makers. The main objectives of this study were to: i) provide guidelines

on data selection for building yield forecasting models using Sentinel-2 imagery; ii)

compare different statistical techniques and vegetation indices (VIs) during model build-

ing; and iii) perform spatial and temporal validation to see if empirical models could be

applied to other regions or when models' coefficients should be updated. Data analysis was

divided into four steps: i) data acquisition and preparation; ii) selection of training data; iii)

building of forecasting models; and iv) spatial and temporal validation. Analysis was per-

formed using yield data collected from 19 maize fields located in Brazil (2016 and 2017) and

in the United States (2016), and normalised vegetation indices (NDVI, green NDVI and red

edge NDVI) derived from Sentinel-2. Main outcomes from this study were: i) data selection

impacted yield forecast model and fields with narrow yield variability and/or with skewed

data distribution should be avoided; ii) models considering spatial correlation of residuals

outperformed Ordinary least squares (OLS) regression; iii) red edge NDVI was most

frequently retained into the model compared with the other VIs; and iv) model prediction

power was more sensitive to yield data frequency distribution than to the geographical

distance or years. Thus, this study provided guidelines to build more accurate maize yield

forecasting models, but also established limitations for up-scaling, from farm-level to

county, district, and state-scales.
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1. Introduction

Precise and reliable yield forecast tools could play a funda-

mental role in supporting policy formulation, and decision-

making process in agriculture (e.g. storage and transport)

(C�ordoba, Bruno, Costa, Peralta, & Balzarini, 2016;

Kantanantha, Serban, & Griffin, 2010; Stone & Meinke, 2005).

Historically, most models developed for yield forecasting

purposes are focused to large domains (between-field vari-

ability) (DiRienzo, Fackler, & Goodwin, 2000; Doraiswamy,

Moulin, Cook, & Stern, 2003; Hamar, Ferencz, Lichtenberger,

Tarcsai, & Ferencz-Arkos, 1996; Lopresti, Di Bella, &

Degioanni, 2015; Reeves, Zhao, & Running, 2005; Sibley,

Grassini, Thomas, Cassman, & Lobell, 2014), mostly because,

in the past there was limited source of data with a sufficient

temporal and spatial resolution for accurate within-field crop

yield estimates. Nowadays, satellite data have become more

accessible (Azzari, Jain, & Lobell, 2016) with more options of

high resolution imagery such as Skysat, RapidEye, and

Sentinel-2 satellites, and more studies have portrayed the

benefits of using high-resolution satellite imagery for identi-

fying within-field yield variation (Azzari et al., 2016; Jin,

Azzari, Burke, Aston, & Lobell, 2017; Peralta, Assefa, Du,

Barden, & Ciampitti, 2016). Among the high-resolution satel-

lites, the publically accessible Sentinel-2, a joint initiative of

the European Commission (EC) and the European Space

Agency (ESA), represents a great opportunity towards fine-

resolution yield forecast models, since it was designed to

provide systematic global acquisitions of high-resolution (10-

to 20-m) multi-spectral imagery with a high revisit frequency

(5 days at equator) (Drusch et al., 2012).

The potential to forecast yield using satellite information is

already known and a wide set of statistical approaches have

been explored. Some approaches rely on the statement that

total biomass production is closely related to the fraction of

photosynthetically active radiation (fAPAR) absorbed by

vegetation over the course of the growing season (Monteith,

1977). Estimations of fAPAR are most often derived from VIs

(Lobell, 2013), since the linear relationships between those two

variables are well-known (Myneni & Williams, 1994). Howev-

er, considering that most remote sensing data are not avail-

able on a daily basis, some interpolation is needed to estimate

daily fAPAR.

Empirical relationships between ground-based yield mea-

sures and remote sensing data have been considered as the

simplest approach to forecast yield with low computational

power demanding (Hatfield, Gitelson, Schepers, & Walthall,

2008; Lobell, 2013), and have been successfully implemented

in several studies with maize (Bogn�ar et al., 2011; Bu, Sharma,

Denton, & Franzen, 2017; Lobell, Thau, Seifert, Engle, & Little,

2015; Peralta et al., 2016; Shanahan et al., 2001; Sibley et al.,

2014). The success of this approach is directly related to the

selection of ground-truth data to build models. During the

model building process the separation of data into training

and validation datasets is a common practice allowing self-

test model replicability irrespective of the difference be-

tween the two datasets in space or time. The selection of

training data is known to have a direct impact on the model

quality (Hatfield et al., 2008; Schwalbert et al., 2018) but,

despite that, the majority of the published scientific literature

randomly selected a subset of the data for comprising training

or validation data (Assefa et al., 2016; Gholap, Ingole, Gohil,

Gargade, & Attar, 2012; Gonzalez-Sanchez, 2014; Peralta

et al., 2016; Sheridan, 2013) without following any guideline or

statistical procedure.

Moreover, the choice of the statistical model employed to

forecast yield has a large impact on the final result (Anselin,

Bongiovanni, & Lowenberg-DeBoer, 2004; Peralta et al., 2016).

Mostly empirical yield forecasting models based on VIs utilise

classical ordinary least squares (OLS)-based on simple or

multiple regression techniques (Noureldin, Aboelghar, Saudy,

& Ali, 2013; Rembold, Atzberger, Savin, & Rojas, 2013;

Shanahan et al., 2001), without properly accounting for the

spatial autocorrelation structure amongst these variables

(Imran, Zurita-Milla, & Stein, 2013; Peralta et al., 2016). The

latter situation can lead to problems with inflated variance

and likely resulting in wrong conclusions (Anselin et al., 2004;

Bongiovanni, Robledo, & Lambert, 2007).

Models derived from simple empirical relationships

usually tend to be time- and space-limited, valid only under

similar conditions as when the correlation was established

(Hatfield et al., 2008; Lobell, 2013; Tucker, 1979). Currently,

the potential to forecast yield using satellite information

through empirical models is already known, but the chal-

lenge is to extend these tools beyond the environment

where the study was done (Hatfield et al., 2008). Lastly, the

selection of adequate VIs is also an important step for model

development (Peralta et al., 2016). The normalised difference

vegetation index (NDVI) (Rouse, Haas, & Schell, 1973) is one

the most widely used VIs to assess crop growth and yield

(Peralta et al., 2016; Raun, Solie, & Johnson, 2002; Rembold

et al., 2013; Solie, Dean Monroe, Raun, & Stone, 2012), and

it becomes as a benchmark for researchers developing new

VIs (Hatfield et al., 2008). However, there are some con-

straints related to saturation in medium to high leaf area

index (LAI) values with NDVI (Haboudane, Miller, Pattey,

Zarco-Tejada, & Strachan, 2004; Nguy-Robertson et al.,

2012; Tucker, 1979). Thus, the incorporation of other VIs that

still have sensitivity in high LAI values such as green NDVI

(NDVIG) (Gitelson, Kaufman, & Merzlyak, 1996) and red-edge

NDVI (NDVIre) (Gitelson & Merzlyak, 1994) have been re-

ported improving empirical models (Hatfield et al., 2008;

Peralta et al., 2016).

Following this rationale, guidelines for implementing yield

forecasting models derived from empirical relationships and

for validating their spatio-temporal relevancy still remain

unknown. Thus, the objectives of this studywere to: i) identify

parameters to guide data selection aiming at building yield

forecasting models using Sentinel-2 satellite imagery; ii)

compare different approaches (OLS vs. spatial correlation) and

different VIs during the model building process; iii) perform

spatial and temporal model validation using independent

datasets to identify potential limitations in up-scaling yield

forecasting models. The main hypothesis is that model pre-

dictability power increases as the yield frequency distribution

of the training data becomes more similar to the validation

data even when considering diverse spatio-temporal scales

(geography, time, or years).
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