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Customary methods for assessing poultry meat quality are invasive, generally time-

consuming and require specialised analysts. Near-infrared (NIR) spectroscopy represents

a powerful alternative with none of these drawbacks. Combining the absorbance for

different wavelengths in NIR range with analytical information from reference methods, it

is possible to build models for meat quality prediction. These prediction models can be

developed independent of each property or based on the statistical dependency of desired

extrinsic properties, namely Single-target (ST) or Multi-target (MT), respectively. A new MT

method, designated Multi-target Augmented Stacking (MTAS), is compared to the perfor-

mance of ST and other three MT methods (Stacked Single Target, Ensemble of Regressor

Chains and Deep Regressor Stacking) to predict twelve poultry meat characteristics.

Different learning algorithms were selected to compose each prediction method: Support

Vector Machine (SVM), Random Forest (RF) and Classification and Regression Tree (CART).

Results demonstrated that the coefficient of determination was greater than, or equal to,

0.5 for nine out of twelve targets. In addition, the prediction errors were comparable to the

error obtained by traditional analysis. Furthermore, MT methods were statistically superior

to ST method. In particular, SVM and RF outperformed CART, providing a new tool for

identification of poultry meat attributes.
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1. Introduction

The production of poultry meat has rapidly increased in

recent years. In 2015, this type ofmeat was themost produced

in the world, achieving a total production of 116.9 million

tonnes (FAO, 2017).

Nutritional research in poultry science often requires

carcass chemical analysis to assess the nutritive value of

meat. Quality of chicken meat is associated to physical and

chemical traits usually assessed in the breast muscle. Con-

ventional analysis for moisture, fat, protein and ash are slow-

performing, laborious and require the use of chemical re-

agents and expensive equipment (Cozzolino, Murray,

Paterson, & Scaife, 1996).

Traditional analytical methods are usually destructive,

requiring lengthy sample preparation procedures. Recently,

modern techniques have been investigated for fast, reliable

and reagent-less meat quality assessment (Barbin et al., 2015).

A good candidate method for the real-time and large-scale

estimation of nutritional value is near-infrared spectroscopy

(NIR). Wold, Veiseth-Kent, Høst, and Løvland (2017) indicated

a regression model for protein andmoisture content based on

NIR spectra and the estimated concentrations of protein. NIR

spectroscopy is based on absorption bands derived from

overtones and combinations of fundamental vibrations of

chemical bonds observed in the 780e2500 nm range of the

electromagnetic spectrum (Porep, Kammerer, & Carle, 2015).

One possibility to predict meat characteristics is to create

independent models based on the NIR spectra for each char-

acteristic, a method known as Single-target (ST). This method

relies on multivariate linear methods, considered as a branch

of Machine Learning (ML) supervised approaches, which are

able to automatically detect patterns in the data and use these

patterns to predict new data. Recently, some research in

different areas has indicated that exploring ML algorithms

and taking advantage of the mutual dependence among the

outputs (meat properties in this work) could improve predic-

tion accuracy (Aho, Zenko, Dzeroski, & Elomaa, 2012;

Borchani, Varando, Bielza, & Larra~naga, 2015; Mastelini,

Santana, Cerri, & Barbon, 2017; Melki, Cano, Kecman, &

Ventura, 2017; Santana, Mastelini, & Junior, 2017;

Spyromitros-Xioufis, Tsoumakas, Groves, & Vlahavas, 2016).

These novel methods are known as Multi-target (MT).

This work aims at evaluating MT regression to determine

poultry meat characteristics based on the absorbance of the

meat for different wavelengths. The NIR spectra was used as

predictors for proposing a novel MT method in order to

improve the predictive power of this non-destructive, fast and

low cost method. A method, designated Multi-target

Augmented Stacking (MTAS), is developed by combining the

stacking concept with multiple base learners.

This paper is organised as follows: Section 2 discusses the

MT regression methods used in the work. Section 3 describes

the dataset acquisition, statistical procedures and regression

algorithms. Section 4 exposes the results and their analysis

followed by Section 5, that concludes the paper.

2. Multi-target regression

The customary method to predict continuous outcomes (tar-

gets) of a given task is obtaining a separatemodel for each one

of the targets (ST approach). However, the interaction among

the outputs could improve their prediction. In this sense,

Spyromitros-Xioufis et al. (2016) proposed two MT methods:

Stacked Single-Target (SST) and Ensemble of Regressor Chains

(ERC).

The SST method, also known as Multi-target Regressor

Stacking (MTRS), consists of separately training ST models

and using their outputs as additional prediction features. Its

representing diagram is available in Fig. 1. Considering a
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a Significance level

l Number of layers

a* Redness

ARE Average Relative Error

aRMSE Average Root-Mean-Squared Error
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B Base learners set
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DRS Deep Regressor Stacking
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m Number of features

ML Machine Learning

MSE Mean Squared Error

MT Multi-target

MTAS Multi-target Augmented Stacking

NIR Near-infrared

PC Principal component

PCA Principal component analysis

r Regressor

R2 Coefficient of determination

RF Random Forest

RMSE Root-Mean-Squared Error

RPT Relative Performance per Target

RRMSE Relative Root Mean Square Error

SF Shear force

SST Stacked Single-Target

ST Single-target

SVM Support Vector Machine
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Y Targets set
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