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This study explores the potential of a novel hyperspectral snapshot mosaic camera for

weed and maize classification. The image processing, feature engineering and machine

learning techniques were discussed when developing an optimal classification model for

the three kinds of weeds and maize. A total set of 185 spectral features including

reflectance and vegetation index features was constructed. Subsequently, the principal

component analysis was used to reduce the redundancy of the constructed features, and

the first 5 principal components, explaining over 95% variance ratio, were kept for further

analysis. Furthermore, random forests as one of machine learning techniques were built

for developing the classifier with three different combinations of features. Accuracy-

oriented feature reduction was performed when choosing the optimal number of fea-

tures for building the classification model. Moreover, hyperparameter tuning was

explored for the optimal selection of random forest model. The results showed that the

optimal random forest model with 30 important spectral features can achieve a mean

correct classification rate of 1.0, 0.789, 0.691 and 0.752 for Zea mays, Convolvulus arvensis,

Rumex and Cirsium arvense, respectively. The McNemar test showed an overall better

performance of the optimal random forest model at the 0.05 significance level compared

to the k-nearest neighbours (KNN) model.
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1. Introduction

Maize (Zea mays), one of the main cereals for food, forage and

processed industrial products, is widely grownworldwide and

a greater amount of maize is produced every year than any

other grain (Ostrý, Malı́�r, & Pfohl-Leszkowicz, 2015). Although

the maize yield increased to 1080 million tonnes in 2016 ac-

cording to the statistics of the Food and Agriculture Organi-

zation of United Nations (FAO),1 the quality of this crop still

faced many problems such as weed infestation, animal pests

and pathogens (Oerke, 2006). Weeds are one of the most

important factors to limit maize production. They cause sig-

nificant yield losses worldwide with an average of 29.2% if no

weed control is applied (Dogan, Ünay, Boz, & Albay, 2004;

Oerke & Steiner, 1996). Generally, most fields are infested

withmultipleweeds. Formaize fields, Convolvulus arvensis and

Cirsium arvense are the common weeds in central and western

Europe (Meissle et al., 2010). In some certain circumstances,

Rumex is also germinated among maize seedlings due to the

easy propagation of its seeds. Besides, they are all perennial

dicotyledons, which are suitable to control using chemical or

mechanical ways (Macı́as, Castellano, & Molinillo, 2000;

Zhang, 2003). The common weed management methods

include prevention and cultural, mechanical, biological and

chemical approaches (Harker & O'Donovan, 2013). Chemical

methods such as spraying effective herbicides are the domi-

nant management techniques for weed control in modern

agriculture (Harker & O'Donovan, 2013). In most weed control

methods, it is generally accepted to be most effective to con-

trol weeds in their early growth stage (L�opez-Granados, 2011).

Especially for maize crop, it is difficult to spray in practices in

late growth stages due to the height of maize plants.

Under natural growing conditions, weeds are generally

distributed in small patches, but farmers often uniformly

spray herbicide in their fields, which is not in agreement with

sustainable agriculture development and increases the cost of

crop production. Site-specific weed management (SSWM), a

precision agriculture approach, refers to the spatially variable

application of weed control strategies for achieving the min-

imisation of herbicide usage (Shaw, 2005). It is useful in

monitoring and managing weed patches at early growth

stages (Shaner & Beckie, 2014). However, one of the main

technical challenges of implementation lies in weed detection

or classification (Shaner & Beckie, 2014; Slaughter, Giles, &

Downey, 2008).

Currently, most weed detection studies can be classified

into two groups. The first group utilises geometric differences

for identification, such as leaf shape, texture, crop location.

The second group differentiates weeds from crops using

spectral reflectance characteristics (Slaughter et al., 2008;

Thompson, Stafford, & Miller, 1991). Based on the two prin-

ciples, various sensors, both imaging and non-imaging ones,

have been applied in the investigation of weed detection in

recent years. RGB cameras are widely applied for weed

detection due to their general availability and low cost (Romeo

et al., 2013; Tellaeche, Pajares, Burgos-Artizzu,& Ribeiro, 2011;

Torres-S�anchez, L�opez-Granados, De Castro, & Pe~na-

Barrag�an, 2013; Gao et al., 2018). However, RGB cameras pro-

vide only limited spectral information as they only record

information using three broad bands. To obtain more spectral

information, a hyperspectral camera was introduced in clas-

sification applications (Gao, Li, Zhu,&He, 2013). Hyperspectral

imaging sensors often involve more and narrower bands to

gain detailed spectral information. Every pixel from hyper-

spectral images has complete spectrum information which

has been used for a variety of applications in agriculture

(Thenkabail et al., 2013). For example, the applications of line-

scanning hyperspectral imagery for weed species recognition

were presented by Okamoto, Murata, Kataoka, and Hata (2007)

and Pantazi, Moshou, and Bravo (2016). Wendel and

Underwood (2016) also developed a self-supervised training

data generation and weed detection system for vegetable

fields. However, these systems, based on line-scanning

hyperspectral sensors, are negatively affected by the rapid

motion of platforms or objects because of the need to scan

image. A snapshot hyperspectral system, without scanning,

Nomenclature

d Dimension of features in the dataset

Eii Diagonal value of confusion matrix

F1 A weighted average of precision and recall

a One sample of the dataset

m The number of trees to build Random Forests

M Eigenvector Matrix

n The number of selected features to build

Random Forests

q01 Number of samples misclassified by KNN but

not by RF

q10 Number of samples misclassified by RF but not

by KNN

m Eigenvalues

b Eigenvector

Rcalibrated(l) Calibrated reflectance at wavelength l

Raw(l) Uncalibrated digital number of pixel at

wavelength l

W(l) The digital number of calibration panel at

wavelength l

Xi A bootstrap subset

J Statistical result from the McNemar test

Abbreviations

CV Cross Validation

DC Dark Current value

KNN K-Nearest Neighbour

NDVI Normalised Difference Vegetation Index

NIR Near Infrared

OOB out of bag samples

RF Random Forests

ROI Region of Interest

RVI Ratio Vegetation Index

SSWM Site-Specific Weed Management

VIs Vegetation Indices

VB Visual band

1 FAOSTAT data website, http://www.fao.org/faostat/en/
#home; accessed 21 January 2018.
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