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This study provides an algorithm to estimate soil thermal diffusivity at any water content

from data on soil texture, bulk density, and percentage of organic carbon. Models were

trained on the dataset of 77 soil samples including silty clays, silty clay loams, silt loams,

clay loams, loams, sandy clay loams, sandy loams, loamy sands, and sands. The ranges of

sand, silt, and clay within the dataset were 1e97, 2e80, and 1e52%; wet bulk density

varied from 860 to 1820 kg m�3, organic carbon ranged from 0.1 to 6.5%. Thermal diffu-

sivity of the undisturbed soil cores measured by the unsteady-state method was from 0.77

to 10.09 � 10�7 m2 s�1. The dataset was split randomly into the training set of 67 samples

and the test set of 10 samples; the procedure was repeated three times. Models were

developed from the measured thermal diffusivity vs. water content curves. The experi-

mental data points for each sample were described by a 4-parameter function. Parameters

of average curves for different textural classes were also determined. Then regression

equations were obtained to estimate the parameters of the thermal diffusivity vs. water

content function for different soils: (i) from soil texture; (ii) from soil texture and bulk

density; (iii) from soil texture and organic carbon; (iv) from soil texture, bulk density, and

organic carbon. The test set data were used to evaluate the model performance. The

normalised root mean square errors of the best-performing models were from 20 to 33%

depending on soil information available.

© 2017 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Thermal diffusivity is equal to thermal conductivity divided

by volumetric heat capacity and reflects both the soil ability to

transfer heat and its ability to change temperature when heat

is supplied or withdrawn. The higher soil thermal diffusivity

is, the thicker is the soil/ground layer in which diurnal and

seasonal temperature fluctuations are registered, and the

smaller are the temperature fluctuations at the soil surface.
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Temporal variability of soil thermal diffusivity is related pri-

marily to the natural temporal variability in soil moisture

(Roxy, Sumithranand, & Renuka, 2014, 2010; Sugathan, Biju, &

Renuka, 2014). Spatial variability may also be explained to

some extent by the spatial variability of soil moisture, but it

usually turns out that the fundamental cause is the spatial

variability of soil texture, bulk density, and organic carbon

(Arhangelskaya, 2004).

The necessity to estimate soil thermal properties from

available data arises in various fields of biosystems and geo-

systems studies. Examples are assessments of the energy

budget at the soileair interface (Peters-Lidard, Blackburn,

Liang, & Wood, 1998); assessments of the subsurface heat

storage (Popp, Beyer, Dahmke, & Bauer, 2015); constructing

the geothermal systems (Busby, 2016); and modelling coupled

water and heat transfer in soils (Simunek, van Genuchten, &
�Sejna, 2016).

The existing models of soil thermal properties have been

discussed by Barry-Macaulay, Bouazza,Wang, and Singh (2015).

Most authors use data on soil texture, bulk density, organic

carbon, and soil moisture (Rozanski& Stefaniuk, 2016; Tian, Lu,

Horton, & Ren, 2016). The modelling accuracy is rather low. For

example, the determination coefficient (R2) for the recently

published de Vries-based model for soil thermal conductivity

by Tian et al. (2016) was 0.79, which was better than 0.69 for the

previous Faroukiede Vries model (Farouki, 1981, 1982).

Quite often only a few soil data are available to make

necessary estimations, and so the objective of our research

was to developmodels which can work even with aminimum

amount of input information.

When developing our models we followed the same hier-

archical approach that was used in the computer program

ROSETTA to estimate soil hydraulic parameters (Schaap, Leij,

& van Genuchten, 2001): when the only soil information

available is the name of textural class, then the soil thermal

diffusivity vs. water content dependency is predicted based on

this name only. If detailed data on soil texture are available,

then the regression model is used with higher accuracy, and

when data on bulk density and/or organic carbon are incor-

porated, the model estimates of soil hydraulic parameters

become more precise.

The second approach we borrowed from soil hydrology

was grouping soils (Pachepsky & Rawls, 1999). When applying

this method, the whole training dataset is first used without

any grouping. Next, soils are grouped by texture (or by any

other predictors), and regression models are trained sepa-

rately on each of the subsets. Such a grouping-based approach

has been applied by Pachepsky and Park (2015) and gave good

results when modelling saturated hydraulic conductivity of

US soils.

2. Material and methods

2.1. Data sources

Models were developed from the measured k(q) curves, where

k is thermal diffusivity and q is water content. Undisturbed soil

cores were sampled with thin-walled steel cylinders in Suzdal

region (56�230N, 40�250E), Moscow region (56�20N, 37�100E and

54�550N, 37�340E), Kamennaya Steppe (51�030N, 40�430E), and
Adygea (44�500N, 40�300E). Sampling plots are marked in

Fig. 1a. The soil cores sampled in Kamennaya Steppe were

70 mm in height and 50 mm in diameter; all other cores were

100 mm in height and 38 mm in diameter.

Experimental dependencies were obtained by the

unsteady-state method (Abu-Hamdeh, 2003; Arhangelskaya,

2004; Parikh, Havens, & Scott, 1979). One junction of the

differential copper-constantan thermocouple was inserted

into the centre of the core, another junction was left outside.

The soil core was covered and left overnight to equilibrate

with the room temperature of 18e20 �C. Then it was

immersed into the water bath with a constant temperature

of 25 �C, and the voltage in the thermocouple loop was

registered for 8e10 min. This voltage was proportional to

temperature difference between the thermocouple junc-

tions, that is, between the centre of the sample and the water

bath. The rate of the voltage decline due to soil warming in

the course of the experiment was proportional to soil ther-

mal diffusivity.

Nomenclature

a parameter of the k(q) function; difference

between the highest thermal diffusivity and the

thermal diffusivity of dry soil, m2 s�1

AC-model average curve model

AIC the Akaike information criterion

b parameter of the k(q) function; peak width,

dimensionless

C organic carbon content, % by mass

Clay clay content, % by mass

dr the Willmott's index of agreement

k number of predictors

n number of cases

NRMSE normalised root mean square error, %

O mean experimentally observed value of soil

thermal diffusivity within the test set, m2 s�1

Oi observed (measured) thermal diffusivity from

the test set, m2 s�1

Pi model-predicted thermal diffusivity from the

test set, m2 s�1

R2 determination coefficient

RMSE root mean square error, m2 s�1

RSS residual sum of squares, m4 s�2

sand sand content, % by mass

SG-models sand group models

silt silt content, % by mass

TC-models textural class models

U-models universal models

q volumetric water content, m3 m�3

q0 parameter of the k(q) function; water content

corresponding to the highest thermal

diffusivity, m3 m�3

k thermal diffusivity, m2 s�1

k0 parameter of the k(q) function; thermal

diffusivity of dry soil, m2 s�1

rb wet bulk density, kg m�3
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