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This paper analyses two visual odometry systems for use in an agricultural field envi-

ronment. The impact of various design parameters and camera setups are evaluated in a

simulation environment. Four real field experiments were conducted using a mobile robot

operating in an agricultural field. The robot was controlled to travel in a regular back-and-

forth pattern with headland turns. The experimental runs were 1.8e3.1 km long and

consisted of 32e63,000 frames. The results indicate that a camera angle of 75� gives the

best results with the least error. An increased camera resolution only improves the result

slightly. The algorithm must be able to reduce error accumulation by adapting the frame

rate to minimise error. The results also illustrate the difficulties of estimating roll and pitch

using a downward-facing camera. The best results for full 6-DOF position estimation were

obtained on a 1.8-km run using 6680 frames captured from the forward-facing cameras.

The translation error ðx; y; zÞ is 3.76% and the rotational error (i.e., roll, pitch, and yaw) is

0.0482 deg m�1. The main contributions of this paper are an analysis of design option

impacts on visual odometry results and a comparison of two state-of-the-art visual

odometry algorithms, applied to agricultural field data.

© 2017 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Visual odometry (VO) is a method for estimating the position

of a camera from an image sequence. In VO, consecutive

image frames in a sequence are matched for correspondence

and the relative poses between the frames are accumulated.

This estimates the travelled path with up to six degrees of

freedom (DOF). This technique is applied to agricultural field

robots to increase navigation precision compared with that of

current GPS navigation systems and to make robots that can

operate closer to crops than can current systems.

VO has been around for many years, one of the pioneering

studies being by Nist�er, Naroditsky, and Bergen (2004). Their

work introduces an algorithm in which feature points are

extracted from the images, matched to each other, and finally

used for motion estimation. Outliers among the points are

removed using random sample consensus (RANSAC) (Nist�er,

2005). The algorithm is applied to a dataset acquired using a

vehicle with a forward-facing stereo camera. Many state-of-

the-art methods still use the same approach (Cvi�si�c &

Petrovi�c, 2015; Geiger, Ziegler, & Stiller, 2011; Kitt, Geiger, &

Lategahn, 2010) but differ slightly in how the features are
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extracted and matched and in how the outliers are removed.

Position estimation can also be improved by making as-

sumptions as to the environment or by adding amotionmodel

of the vehicle, the goal being to reduce the cumulative error.

One reportedly successful method using downward-facing

cameras in an agricultural application has been presented by

Jiang et al. (2014). Their robot, Gantry, is in the form of a 3-m-

high square-shaped table with a combined driving and

steering wheel at each leg. Two downward-facing cameras

mounted at the top of the robot are used for the VO. In one

experiment conducted in a soybean field, the path follows a

regular back-and-forth track with a total of 13 headland turns.

This experiment has a track length of 2.5 km and consists of

11,700 frames. Their results indicate that the translation error

(2-DOF) was under 5.12 m, which corresponds to 0.2% of the

travelled distance. A shorter path (i.e., 386m and 1300 frames)

on a grass road was also evaluated and the reported result is

1.6%.

For urban environments there are publicly available data-

sets for VO evaluation (Geiger, Lenz, & Urtasun, 2012). One

such dataset, the KITTI Vision Benchmark Suite, consists of

several sequences of images captured from forward-facing

cameras mounted on a car roof. Ground truths are available

for some, but not all, sequences; the remaining sequences are

used for the evaluation of algorithms and a ranking is pub-

lished online.1 Similar datasets are unavailable for the agri-

cultural case, so a similar comparative ranking does not exist.

Two state-of-the-artmethods are selected for evaluation in

this paper, themethod used with the Gantry robot (Jiang et al.,

2014) and the Cþþ VO library Libviso (Geiger, 2015; Geiger

et al., 2011). Gantry was specifically developed for use in

agricultural fields and its reported error was under 0.2%. The

Libviso method is also intended for use in the agriculture field

environment (Markt & Technik, 2015). The highest-ranked VO

algorithm on the KITTI benchmark (Cvi�si�c & Petrovi�c, 2015) is

based on the Libviso method. Cvi�si�c and Petrovi�c (2015) use

the same feature extractor but apply a more sophisticated

outlier rejector, so only selected feature points are used in the

motion estimator; they report translation error of 0.88% and

rotational error of 0.0022 deg m�1. The KITTI benchmark list

reports 2.44% and 0.0114 deg m�1 translation and rotational

errors, respectively, for the Libviso method with stereo cam-

eras, as used in this paper.

To improve the accuracy of VO, this paper seeks new

knowledge of cumulative error when VO is used in an open

field environment typical for agricultural fields with low-

height crops. The accuracy is evaluated by comparing two

algorithms, the Gantry and Libviso methods, on both simu-

lated data and on real data captured by a mobile robot. Using

both simulated and real field data allows the impact of

different design choices to be evaluated, improving our un-

derstanding of how various parameters and settings affect the

VO results in an agricultural field environment.

The main contributions of this paper are an analysis of

design option impacts on visual odometry results and a

comparison of two state-of-the-art visual odometry algo-

rithms, applied to agricultural field data.

2. Visual odometry theory

This section presents the theory related to VO. Consider a 6-

DOF VO system in which the relative pose change of the

camera between consecutive frames is modelled as a rigid

motion transform. The transform can be written as shown in

Equation 1 (Scaramuzza & Fraundorfer, 2011):

dTr ¼
�
R T
0 1

�
(1)

where R2SOð3Þ is the rotation matrix and T2<3�1 is the

relative translation. The cumulative pose C at frame k can be

obtained using Equation (2):

Ck ¼ Ck�1dTr (2)

These are the basic equations of the odometry, and the goal

is to find dTr and Ck for each frame. It should be mentioned

that the transformation matrix is an overdetermined

Nomenclature

a Field of view of the camera

R Rotation matrix

T Relative translation

ux Angular velocity along x-axis

uy Angular velocity along y-axis

uz Angular velocity along z-axis

b Camera baseline

Ck Cumulative pose at frame k

d Disparity between cameras

dTr Relative pose change of the camera between

consecutive frames

f focal length of the camera

fs Frame rate (Hz)

h Camera height above the ground (m)

k frame index

Tx Translational velocity along x-axis

Ty Translational velocity along y-axis

Tz Translational velocity along z-axis

vx Projected 2D flow field along x-axis

vx Projected 2D flow field along x-axis

vy Projected 2D flow field along y-axis

vmax Maximum camera velocity (m/s)

x image points x-coordinate

xl x-coordinate of point in left image

xr x-coordinate of point in right image

y image points y-coordinate

Z Distance to point (depth)

DOF Degrees of freedom

DW Downward facing camera

FW Forward facing camera

ICP Iterative closest point

IMU Inertial measurement unit

RANSAC Random sample consensus

RTK-GPS Real-time kinematic Global Positioning

System

VO Visual odometry

1 The KITTI Vision Benchmark Suite, http://www.cvlibs.net/
datasets/KITTI/eval_odometry.php; accessed 20 June 2016.
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