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a b s t r a c t

This study considers a generalized replacement model for a deteriorating system in which failures can
only be detected by inspection. The system is assumed to have two types of failures and is replaced at the
occurrence of the Nth type I failure (minor failure), or the first type II failure (catastrophic failure), or at
working age T, whichever occurs first. The probability of a type I or type II failure depends on the number
of type I failures since the previous replacement. Such a system can be repaired after a type I failure, but
is deteriorating stochastically. That is, the operating intervals are decreasing stochastically, whereas the
durations of the repairs are increasing stochastically. Based on these assumptions, we determine the
expected net cost rate and discuss various special cases of the model. Finally, we develop a
computational algorithm for finding the optimal policy and present a numerical example to show the
properties of the proposed model.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Most replacement models assume that the repaired system or machine is returned to an “as good as new” state (or called perfect
repair). This assumption means that, upon repair, an item has the same life distribution as a new item. If we only consider operating time
with a negligible repair time, a renewal process is obtained. If we consider the non-zero repair times which are independent and
identically distributed (i.i.d.) random variables, then an alternating renewal process with up and down periods is obtained. However, for a
repairable deteriorating system, it may be more realistic to assume that a failed item will return to an “as bad as old” state after being
repaired. That is, if the life distribution of a new item was F , then the item after repair will have the survival function Ft , where t is the
item's age at failure and FtðxÞ ¼ FðtþxÞ=FðtÞ. This is also known as minimal repair (see [1,2] for more detail). Brown and Proschan [3]
examined an imperfect repair that has probability p of being a perfect repair and probability 1�p of being a minimal repair. Their model
was generalized by Block et al. [4] to the case in which the probability of a perfect repair is age-dependent. These results were further
generalized by Sheu and Griffith [5,6] to the multi-item case. For more advanced practical applications using minimal repair models,
Chang et al. [7] proposed a multi-criteria optimal replacement policy for a system subject to shocks. Xia et al. [8] studied dynamic
maintenance decision-making based on a developed Multi-Attribute Model and Maintenance Time Window (MAM-MTW) methodology,
and Xia et al. [9] studied the optimized maintenance schedule for energy systems subject to degradation through the MAM.

However, for some practical deteriorating systems, the system can be different from those described above. Lam [10] considered a
machine maintenance problem where after each repair, the machine's operating time becomes stochastically shorter. On the other hand,
to model the effect of aging, repair times become stochastically larger. Therefore, we consider a repair and replacement model with such a
feature for analyzing deteriorating systems. Due to the non-increasing operating times after repairs, the system will eventually die out, so
the total system life is finite. One possible way of modeling this kind of deteriorating systems is to use the non-homogeneous Poisson
process (NHPP). Baxter [11], Gupta and Kirmani [12], and Kochar [13] showed that, if the failure rate function is non-decreasing
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(non-increasing) in the NHPP, the operating intervals are stochastically non-increasing (non-decreasing). Lam [10] formulated a geometric
process replacement model, in which the successive operating intervals, Xi; i¼ 1;2; :::

� �
, of an item constitute a non-increasing geometric

process, and the consecutive repair durations, Yi; i¼ 1;2; :::
� �

, constitute a non-decreasing geometric process.
To reduce the chances of a failure during the system's operation, Barlow and Hunter [14] considered the periodic system replacement

or overhaul at times T , 2T , … (for some T40), combined with a minimal repair at the system failure. This model was generalized by
Beichelt [15], Boland and Proschan [16], Boland [17], Block et al. [18], Sheu et al. [19], and Sheu [20,21], among others. Makabe and
Morimura [22–24] proposed a replacement model in which a system is replaced at the Nth failure, and also discussed the optimal policy
for this situation. This model was generalized by Morimura [25], Nakagawa [26], and Sheu and Griffith [27]. These authors assumed that a
failed system becomes functional after a minimal repair and used the NHPP to model these deteriorating systems.

Rangan and Esther Grace [28] considered the optimal replacement policies for a deteriorating systemwith imperfect maintenance. Lam [29]
and Stadje and Zuckerman [30] studied monotone process replacement models in which the repair times were also not negligible. These
models were generalized by Sheu [31].

Maintenance and replacement models are usually based on the assumption that failures are detected and repaired simultaneously.
However, for some systems, failures may be only identified by inspection. Christer and Waller [32] proposed a basic inspection
maintenance model. Baohe [33] studied an optimal inspection and diagnosis policy for a system with self-announcing and non-self-
announcing modes. Wang [34] considered two types of inspections in a delay-time-based setting. Flage [35] studied a delay time model
with imperfect and failure-inducing inspections. Lee and Song [36] considered the system reliability updating of fatigue-induced
sequential failures through inspection and repair. Nakagawa et al. [37] summarized the policies for periodic and random inspection. Chen
et al. [38] applied periodic and random inspection policies to computer systems. Zhao et al. [39] studied optimal time and random
inspection policies for computer systems. Optimal periodic and random inspection with first, last, and overtime policies are proposed in
Zhao and Nakagawa [40]. Cheng and Li [41] studied a geometric process repair model with inspections. They assumed that a system failure
is detected by inspection. In their study, they only considered one failure mode in two common and predominant types of systems.
However, the model with one failure mode may not be realistic for many practical systems. Hence, in this study, we develop a model with
multiple failure modes with a replacement condition for the system's working age. Our model has potential applications in oil and gas
industries, medicine, and nuclear power plants. There are two types of failures, both of which can only be detected by inspection. The
system is replaced at the Nth type I failure (minor failure), first type II failure (catastrophic failure), or at working age T , whichever occurs
first. The probability of a type I or II failure depends on the number of failures since the last replacement. Our model is a generalization of
the models of Lam [10,29], Rangan and Esther Grace [28], Sheu [31] and Cheng and Li [41]. The formulation and optimization of the model
is presented in Section 2. Some special cases are discussed in Section 3. A numerical example is provided in Section 4 and concluding
remarks are made in Section 5.

2. System description and model formulation

The following symbols are used.

N the number of type I failures occurs where the system is replaced
T the working age of the system
M the number of failures until the first type II failure occurs
Pk the probability that the first k failures occur are type I failures; Pk ¼ PðM4kÞ; 1¼ P0ZP1Z⋯
Pk
� �

the abbreviation for a sequence of probabilities
qk Pr{a type I failure occurs when the system fails}; qk ¼ Pk=Pk�1

θk Pr{a type II failure occurs when the system fails}; θk ¼ 1�qk
Xi the operating interval of the system after the ði�1Þth repair
HiðU Þ c.d.f. (cumulative distribution function) of random variable Xi

E½Xi� ¼ λi the mean of the operating interval after the ði�1Þth repair
Yi the repair duration after the detection of the ith failure
E½Yi� ¼ μi the mean of the repair duration after the ith failure detected
γi�1h the time period between two successive inspections in the ith repair cycle which we denote that the time interval between

completion of the ði�1Þth failure repair and the completion of the ith failure repair of the system is called the ith repair cycle
of the system

h the time period between two successive inspections in the first repair cycle and is a real number greater than zero
γ a constant and its value is 0oγo1 to adjust the inspections for the operating interval accordingly
Gi the idle period of the system when the ith failure occurs until it is detected
E½Gi� the mean idle period of the system when the ith failure occurs until it is detected
Q ðk;1Þ the number of inspections during the operating period of the system after the ðK�1Þth repair if the system is finally replaced

at the Nth type I failure or at the first type II failure
E½Q ðk;1Þ� the mean value of Q ðk;1Þ
Q ðk;2Þ the number of inspections during the operating period of the system after the ðk�1Þth repair if the system is finally replaced

at the working age T
AðlÞ denote the number of inspections where the working age of the system is l
E½Q ðk;2Þ� the mean value of Q ðk;2Þ
C1 the repair cost rate
C2 the reward rate whenever the system is operating
C3 the replacement cost
C4 the penalty cost rate for the idle period
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