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a b s t r a c t

For many products, it is not uncommon to see that a unit with a higher degradation rate has a more
volatile degradation path. Motivated by this observation, we propose a new class of random effects
model for the Wiener process model. We express the Wiener process in a special form and allow one of
the parameters to be random across the product population so that a unit with a high degradation rate
would also possess high volatility. Statistical inference of the model is discussed. By the same token, we
introduce a stress–acceleration relation for the Wiener process so that both the degradation rate and the
volatility of the product are increasing in the stress level. The proposed models are demonstrated by
analyzing a dataset of fatigue crack growth and a dataset of head wears of hard disk drives. The
applications suggest that our models perform better than existing models that ignore the positive
correlation between the drift rate and the volatility.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For some products such as expensive equipment or highly
reliable devices, product failure data are scarce. The lack of failure
data makes the prediction of failure time distribution and the
subsequent decisions, such as warranty design and preventive
maintenance scheduling challenging tasks. It is found that most
ageing failures can be attributed to some underlying degradation
mechanism, under which the damage accumulates over time and
eventually leads to a product failure when the accumulated
damage reaches a failure threshold, either random or specified
by industrial standards. For example, it has been a common
practice to define the lifetime of a light emitting diode (LED) as
the time when the lumen output of the LED lighting first crosses
the threshold line of 70% of its initial lumen output level. The
corresponding lifetime is often written as L70. Similar examples
are capacity drop in batteries, gearbox vibration, tyre wear,
increase in resistance for electronic devices such as electromag-
netic relays. The degradation-threshold failure phenomenon pro-
vides an intimate link between degradation and product failures.
The failure time distribution and the parameters therein can be
determined through analysis of the degradation mechanism and
the degradation data collected from this product. The degradation
model can then be used in burn-in modelling [33] and main-
tenance optimization [3,13]. A famous degradation model is the
Wiener process with positive drifts, where the first-passage-time

of its degradation path to a fixed failure threshold level follows an
inverse Gaussian distribution. A popular representation of the
Wiener process in degradation analysis is

XðtÞ ¼ νΛðtÞþσBðΛðtÞÞ; ð1Þ

where ν is the drift parameter reflecting the rate of degradation, σ
is the volatility parameter, Bð�Þ is the standard Brownian motion,
and Λð�Þ is a monotone increasing function representing a general
time scale [31]. By convention, we let Λð0Þ ¼ 0 and Xð0Þ ¼ 0.

The basic Wiener process (1) has received wide applications in
degradation analysis. As some examples, Whitmore and Schenkel-
berg [31] used it to model resistance increase in a self-regulating
heating cable; Le Son et al. [8] found a good fit of (1) to the 2008
PHM Conference Challenge data. Hu et al. [4] applied the same
model to an LED dataset. Nevertheless, many real applications
suggest that degradation of a batch of products is usually affected
by two types of variability, i.e., individual variability and temporal
variability. The temporal variability is the inherent variation in the
degradation for a unit; while the individual variability determines
heterogeneity among the degradation paths of different product
units. This variability refers to the phenomenon that under the
same operating and environmental conditions, the observed
degradation in a product population is very different due to some
unobservable effects, such as variations in the raw materials and in
the manufacturing processes. The basic model (1) is capable of
capturing the inherent variability. Nevertheless, it fails to model
the individual variability. In the literature, the individual varia-
bility has been well modelled by introducing random effects into
(1). A random-effects model modifies certain parameters of the
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degradation model to be unit-specific and they follow a certain
distribution. For example, Peng and Tseng [18] proposed a Wiener
process with random effects model. They assumed that different
units in the population have different realizations of the drift
parameter ν, while they share the same volatility parameter σ.
Typically, a normal distribution for ν yields an analytically tract-
able random effects model. This model was investigated in-depth
by Peng and Tseng [18], and was found a good fit to the famous
GaAs laser degradation data in Meeker and Escobar [14, Example
13.5]. Si et al. [23] adopted the same random-drift Wiener process
model to analyze gyroscopic drift data in an inertial navigation
platform used in weapon systems, and a fatigue-crack length
growth dataset of the 2017-T4 aluminum alloy. More applications
of this model can be found in Tsai et al. [25], Si et al. [22], Wang
et al. [30,28], etc. Similar idea of imposing a normal distribution on
ν was also extensively analyzed from the Bayesian perspective. See
Feng et al. [2], Jin et al. [6], Liao and Tian [11], etc., for some recent
references and Jardine et al. [5], Si et al. [21] for reviews of the
related literature. Recently, Peng and Tseng [20] proposed a more
general random-drift model by assuming a skew-normal distribu-
tion for ν, which includes the normal distribution and the
truncated normal as special cases.

The above random-drift Wiener process models assume a
constant σ across the product population. In reality, however, it
is not uncommon to see that when the degradation of a product
unit is faster, the variation of the degradation over time is also
higher. This means that a unit with a larger drift parameter ν is
expected to have a larger volatility parameter σ as well. In the
famous GaAs laser degradation data example presented in Meeker
and Escobar [14, Example 13.5], if we fit each of the 15 degradation
paths with (1) by letting ΛðtÞ ¼ t, we can obtain 15 pairs of ðν̂ i; σ̂ iÞ.
A simple calculation shows that the sample correlation coefficient
of ν̂ and σ̂ is 0.487. The positive correlation between the mean and
the variance of the degradation path can be easily captured when
the Gamma process model or the inverse Gaussian process model
is used. For example, the mean and the variance of the homo-
geneous Gamma process fYðtÞ; t40g, where YðtÞ �Gammaðat; bÞ,
are at=b and at=b2, respectively [36]. A unit with a higher
degradation rate, i.e., either a large a or a small b, will also have
a high volatility. The same relation holds for the inverse Gaussian
process, where YðtÞ � IGðat; bt2Þ and the mean and the variance of
Y(t) are, respectively, at and a3t=b [35]. Nevertheless, the current
Wiener process models available in the literature fail to capture
this important relation. Wang [27] introduced a random effects
model by letting σ�2 �Gammaðr; δÞ and ½νjσ2� �N ðμ;θσ2Þ. Based
on this random effects model, a larger realization of σwould result
in a larger variation in ν rather than a larger ν. Therefore, this
model fails to capture the positive correlation between ν and σ. In
this paper, we introduce a new class of random effects model that
is able to model this positive correlation.

Even when the degradation is quite homogeneous under the
same operating conditions, e.g., for products produced from a
mature manufacturing line, it is expected that degradation of a
product would be hastened when the product is operated/tested
under more severe conditions. The operating conditions, when
observable, can be treated as covariates and incorporated into the
degradation process. The covariates are also called stresses in the
literature of accelerated degradation testing (e.g., [19]). Incorpora-
tion of covariates in the Wiener process (1) has been well studied
in the literature. Doksum and Normand [1] used the Wiener
process to describe a biomarker series and they assumed that ν
is a function of the covariates while σ being a constant. This
assumption is also adopted in Park and Padgett [16,17], Liao and
Tseng [9], Lim and Yum [12]. However, similar to the analysis for
the random effects models above, we expect that when the
degradation rate increases, the degradation variation would also

become larger in some applications. Whitmore and Schenkelberg
[31] fitted the degradation data of each individual unit separately
and then used linear regression to establish the relationship
between ν and the transformed stress as well as the relationship
between σ and the stress. Their analysis revealed that both ν and σ
are increasing in the testing temperature. Liao and Elsayed [10]
also assumed that both ν and σ in (1) are increasing functions of
the stress. If we assume that ν and σ are independent functions of
the stresses, however, there might be excessive parameters to be
estimated. To reduce the number of parameters, Peng and Tseng
[19] incorporate the covariates using the cumulative exposure
model. Basically, the cumulative exposure model assumes that
operation under a stress for a duration of t is equivalent to the
operation under a baseline stress for a duration of ρs � t, where ρs is
a scaling factor depending on the stress s. In this work, we propose
another approach to incorporate the stresses so that both ν and σ
are increasing functions of the stress. The idea is similar to the
random effects model proposed in this study.

The rest of the paper is organized as follows. Section 2
introduces the new random effects Wiener process model such
that the degradation rate changes along with the degradation
volatility of a unit. The EM algorithm is used for the statistical
inference and its performance is evaluated through simulation.
Section 3 presents the stress–acceleration relation for the Wiener
process as a counterpart of the new random effects model. Section
4 demonstrates the random effects model using the fatigue crack
growth data reported in Wu and Ni [32] and the laser data in
Meeker and Escobar [14, Example 13.5], The stress–acceleration
model is demonstrated using a new head wear dataset of hard disk
drives (HDDs). Section 5 concludes the paper with discussions.

2. A random effects model

To introduce the new random effects model, we express the
Wiener process as

XðtÞ ¼ υΛðtÞþςυBðΛðtÞÞ: ð2Þ
Compared it with (1), it is easily seen that σ ¼ ςυ. However, the
new expression (2) enables us to introduce correlation between υ
and σ. In the proposed random-effects model, the parameter υ is
treated as random across the population. A unit with a high
realization of υ would possess a high degradation rate and a high
variation in the degradation path, which is more realistic in many
applications. A tractable random effects model results when we
assume η¼ 1=υ�N ðμ;ω2Þ. As argued in the Introduction, the
normal assumption for the random effects has been widely
adopted for the Wiener process (1). This partially supports our
assumption here. In fact, when the probability of a negative η is
small, say, μ�3ω40, a negative realization of υ is unlikely and the
normal assumption would be meaningful. By integrating out the
random effects, it is readily shown that the unconditional dis-
tribution of X(t) is

f XðtÞðxÞ ¼
ðxω2þμς2ÞΛðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π½x2ω2þς2ΛðtÞ�3

q exp � μx�ΛðtÞ� �2
2 ς2ΛðtÞþω2x2
� �

 !
:

We shall highlight that if the negative probability is significant, we
may use the truncated normal distribution for η instead, with
support on ½a;1Þ, a40. The unconditional distribution of X(t) also
has a closed-form, though more complicated. Statistical inferences
under the truncated-normal random-effects are similar to the
normal case. For simplicity, we use the normal distribution for η
throughout the paper for demonstration.

In practice, the realization of υ for a particular unit is fixed yet
unknown and unobservable. In prognostics and health management,
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