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a b s t r a c t

The complexity of modern systems is increasing rapidly and the dominating relationships among system
variables have become highly non-linear. This results in difficulty in the identification of a system's
operating states. In turn, this difficulty affects the sensitivity of fault detection and imposes a challenge
on ensuring the safety of operation. In recent years, Self-Organizing Maps has gained popularity in
system monitoring as a robust non-linear dimensionality reduction tool. Self-Organizing Map is able to
capture non-linear variations of the system. Therefore, it is sensitive to the change of a system's states
leading to early detection of fault. In this paper, a new approach based on Self-Organizing Map is
proposed to detect and assess the risk of fault. In addition, probabilistic analysis is applied to characterize
the risk of fault into different levels according to the hazard potential to enable a refined monitoring of
the system. The proposed approach is applied on two experimental systems. The results from both
systems have shown high sensitivity of the proposed approach in detecting and identifying the root
cause of faults. The refined monitoring facilitates the determination of the risk of fault and early
deployment of remedial actions and safety measures to minimize the potential impact of fault.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The rapid increase in complexity of modern systems imposes a
challenge towards ensuring the safety of operations. This increase
in complexity is directly related to the number of variables a
system comprises. Each variable represents an individual dimen-
sion. To ensure the safety of a system, multiple variables have to be
monitored simultaneously. This requires a tool with reliable high
dimensionality handling capabilities. In addition, as the dimen-
sionality increases, the relationships among system variables
become highly non-linear. The identification of these non-linear
relationships enables precise monitoring of behaviors of variables
which is another key aspect concerning the safety of systems [1].
The disruptions of the relationships among system variables can
cause abnormal behaviors which are considered as faults. The
potential impact on the safety of system increases with the
progression of fault. To minimize the impact, it is best to detect
the fault at its early stage; this requires the development of a fault
detection approach with high sensitivity. Also, the progression of
fault needs to be traced to facilitate the efficient determination of
safety measures and remedial actions to minimize the impact.

In many cases, the monitoring of complex systems is achieved
through a technique known as dimensionality reduction. In general,
variables that represent the most variances of system are combined to
form a new set of variables and the variables representing less
variance are disregarded. The system is then monitored based on
the new set of variables which has less dimensionality.

In recent years, Self-Organizing Maps (SOMs) have gained popu-
larity in fault detection and identification of complex systems as an
efficient dimensionality reduction technique [2]. SOM has the ability of
capturing nonlinear relationships of high dimensional data and
visualizing them on a low-dimensional display in a topologically
ordered fashion known as feature clusters [2–5]. This feature of SOM
makes it sensitive to the change of state of complex, nonlinear
systems, therefore makes it an efficient tool for early fault detection
[2]. Kohonen et al. [2] have given a comprehensive review of the
applications of SOM in engineering applications. In particular, they
have summarized two fault identification techniques by using the
quantization errors and visualization power of SOM. These two
techniques have been adapted by many others to detect and identify
faults for different systems.

Gonçalves et al. [4] have utilized both techniques to detect and
identify faults of electrical valves. The SOM was trained to form five
feature clusters with five data sets comprising the normal condition
and four fault conditions. A fault was detected when the quantiza-
tion error exceeded a certain threshold. For fault identification, the
dynamic behaviors of the monitored system were visualized as
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trajectories on SOM. The fault type was identified when the trajectory
moved in one of the four fault clusters. Similar techniques for fault
identification can also be found in references [3,6–8].

Although the above research studies demonstrated the cap-
ability of SOM in dynamic monitoring and fault identification of
complex systems, they are limited by the availability of data and
they failed to address the potential impact of fault on the system.
In fact, the visualization power of SOM also has the capability of
indicating the magnitude of fault which can be used to determine
the potential impact.

One important feature of SOM is that data with high similarity
are mapped closer to each other; otherwise, they are mapped
further apart [9]. This provides a means of measuring the progres-
sion of fault; that is, as the fault condition deteriorates, the process
system generates data with less similarity to the normal data and
is mapped further away from the normal cluster. In this regard, the
exceedance of fault data from normal cluster corresponds to the
degree of fault and the trajectory representing the dynamic
behavior of system indicates the progression of fault.

Zadakbar et al. [10] described a way of measuring the impact of
fault using a risk-based approach. They applied Principle Compo-
nent Analysis (PCA) as the dimensionality reduction technique for
fault detection. The normal data was projected into a subspace
determined by PCA to form a normal cluster. The cluster was
considered as a standard normal distribution and its boundary was
defined by mean and standard deviation of the projected data.
When monitored data was projected into the same subspace, the
probability of fault and exceedance of process system operation
were calculated based on the mean and standard deviation. The
intensity of fault at a given exceedance was determined by
summing the hazard potential of each system variable. Subse-
quently, the severity of fault was calculated based on the intensity
and exceedance. Finally, the severity of fault was combined with
the probability of fault to determine the risk of fault which
provided a measure of potential impact on the system. However,
due to the linear nature of PCA, the sensitivity of this approach for
fault detection is limited.

In this work, SOM is combined with the risk-based approach
developed by Zadakbar et al. [10]. The normal cluster on SOM is
considered as a standard normal distribution. The probability,
intensity and severity of fault are calculated and are combined to
determine the risk of the fault. In addition, this new approach is
also combined with probabilistic analysis to characterize the risk
of fault into different levels. This allows a refined monitoring of the
system as fault propagates. Proper safety measures and remedial
actions can then efficiently be determined in correspondence to
different risk levels to minimize the potential impact.

This paper is divided into the following sections: in Section 2,
the methodology of the new approach based on SOM is explained.
The verification of this new approach is then conducted in Section 3
on two experimental systems: a tank pressure control system in
Section 3.1 and a flow control system in Section 3.2. The faults for
verification are introduced as deviations into one variable of each
system. The results from both systems are also discussed. Section 4
summarizes the major findings of the paper and conclusions
are drawn.

2. Methodology

The overall methodology of risk-based fault detection approach
is outlined by the following logical chart. (Fig. 1).

The real-time system data is projected onto a trained SOM map
to form a trajectory representing the dynamic behavior of the
system. Data filtering is then applied to the trajectory to filter out
less significant variations of the system. Based on the trend of the

filtered trajectory, the system behavior is predicted five-point
forward using moving average trend prediction. Subsequently,
the dynamic loading, severity and probability of fault are calcu-
lated. The dynamic loading is used to identify the root cause of
fault. The risk of fault is determined by combining the severity and
probability of fault. Meanwhile, the operation of the system is
characterized into different states through probabilistic analysis.
The prior probabilities and predicted probabilities of system
operating in different states are calculated. The posterior prob-
abilities of system operating in different states are determined by
updating the prior probabilities with the predicted probabilities.
Finally, the posterior probabilities and the risk of fault are used to
determine the risk of system operating in different states. Accord-
ing to the risk level, proper remedial actions and safety measures
are determined to minimize the potential impact of the fault.

2.1. Self-Organizing Map

The SOM was proposed by Kohonen [11] as a specific type of
neural network. Its concept is originated from the functions of
cerebral cortex of brain. The cerebral cortex is divided into
different areas for processing signals such as sight, hearing and
tactile sensation [12]. On receiving these signals, the cortex will
first classify and then map them to the corresponding areas to
be processed. In each area of the cortex, neurons with similar
functionality are closely related, leading to fast and accurate
processing of the signals. This form of classifying and mapping
signals to the corresponding processing area is called topographic
mapping which is also the fundamental concept of the SOM [11].

Self-Organizing Map is able to discover the nonlinear latent
features from high dimensional data. These low-dimensional
features are presented in the form of a layer of topologically
ordered neurons on a 2D map. A typical two-dimensional SOM is
shown in Fig. 2.

Training of SOM mainly composes of three phases; competi-
tion, cooperation and adaption [11]. In the phase of competition,
neurons first compete with each other and the neuron having the
weight vector closest to the input signal vector is declared as the
winner neuron or the Best Matching Unit (BMU). It is assumed the
input signal vector is represented by I¼[I1, I2, I3, …, In]T and the
weight vector is represented by W¼[W1, W2, W3, …, Wn]T.
Mathematically, the difference between the weight vector and
the input signal vector is computed as the Euclidean Distance
between them.

E¼ ‖I�W‖¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i ¼ 1

ðIi�WiÞ2
vuut ð1Þ

The neuron that has the smallest E is the BMU. Next, in the
cooperation phase, the direct neighborhood neurons of the BMU
are identified. Finally, in the adaption phase, these neurons are
selectively tuned to form a specific pattern on the lattice. This
pattern corresponds to a specific feature of the input signal vector.
The tuning function is expressed as;

Wðtþ1Þ ¼WðtÞþαðtÞθðtÞ½IðtÞ�WðtÞ� ð2Þ
where αðtÞ is the tuning rate and θðtÞ is the exponential neighbor-
hood function. αðtÞ decreases exponentially over iteration resulting
in a more refined tuning towards the end of training process.

αðtÞ ¼ α0eð� t=λÞ ð3Þ
where α0 is the initial learning rate and λ is the time constant
which is determined as.

λ¼ N
σ0

ð4Þ
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