
Verifying large modular systems using iterative abstraction refinement

Jussi Lahtinen a,n, Tuomas Kuismin b, Keijo Heljanko b

a VTT Technical Research Centre of Finland Ltd., Systems Research, P.O. Box 1000, FI-02044 Espoo, Finland
b Helsinki Institute for Information Technology HIIT and Department of Computer Science, School of Science, Aalto University, P.O. Box 15400, FI-00076 Aalto,
Finland

a r t i c l e i n f o

Article history:
Received 7 June 2013
Received in revised form
5 March 2015
Accepted 6 March 2015
Available online 14 March 2015

Keywords:
Model checking
Verification
Validation
Iterative abstraction refinement

a b s t r a c t

Digital instrumentation and control (I&C) systems are increasingly used in the nuclear engineering domain.
The exhaustive verification of these systems is challenging, and the usual verification methods such as
testing and simulation are typically insufficient. Model checking is a formal method that is able to
exhaustively analyse the behaviour of a model against a formally written specification. If the model checking
tool detects a violation of the specification, it will give out a counter-example that demonstrates how the
specification is violated in the system. Unfortunately, sometimes real life system designs are too big to be
directly analysed by traditional model checking techniques. We have developed an iterative technique for
model checking large modular systems. The technique uses abstraction based over-approximations of the
model behaviour, combined with iterative refinement. The main contribution of the work is the concrete
abstraction refinement technique based on the modular structure of the model, the dependency graph of the
model, and a refinement sampling heuristic similar to delta debugging. The technique is geared towards
proving properties, and outperforms BDD-based model checking, the k-induction technique, and the
property directed reachability algorithm (PDR) in our experiments.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Digital instrumentation and control (I&C) systems are increasingly
used in the nuclear engineering domain. The exhaustive verification
of these systems is challenging, and verification methods such as
testing and simulation are typically insufficient.

Model checking [1,2] is a formal method that is able to exhaus-
tively analyse the behaviour of a model against formally written
specifications. If the model checking tool detects a violation of a
specification, it will give out a counter-example that demonstrates
how the specification is violated in the system.

In this work, we are primarily using the model checker NuSMV
2.5.4 [3], which was originally designed for synchronous digital
hardware model checking. The NuSMV model checker does not have
a notion of continuous time but instead the timing elements in our
models are modelled with discrete time steps using explicit counter
variables. In NuSMV, the formal correctness specification can be
written as a simple state invariant clause that should hold in each
individual reachable state of the system, or in a more complex
specification language such as the Linear Temporal Logic (LTL) and
the Computation Tree Logic (CTL) [1,2]. In addition to NuSMV, we also
utilise another model checking tool called ABC/ZZ by Niklas Eén [4].

Since our models are written in the NuSMV modelling language, we
translate the NuSMVmodels into the AIGER format [5] used in ABC/ZZ.

The specifications used in this work are formalised as state
invariant specifications, but we are exploiting a procedure compatible
with our approach that reduces LTL property model checking into
state invariant model checking [6], thus enabling all LTL properties to
be model checked.

The classical algorithm for model checking state invariant
specifications is based on symbolically representing and exploring
the reachable state space of the system by using Binary Decision
Diagrams (BDDs) [1], which are a highly efficient data structure for
representing and doing operations with large state spaces. Another
way to check state invariants is to use a propositional satisfiability
solving (SAT)-based approach. This line of work employs a proposi-
tional satisfiability solver in a bounded model checking (BMC)
procedure [7,6], which looks for counter-examples shorter than a
user provided maximum length, called the bound. An advanced
variant of this procedure we employ in this work is called
k-induction [8,9]. In that approach the state invariants are proved
using induction, and the base step and the induction step of the
proof are basically reduced to bounded model checking problems.
Another SAT-based technique for checking safety properties is the
IC3 algorithm by Bradley [10], also known as property directed
reachability (PDR). The technique inductively searches for an
invariant that holds in the initial state and implies the examined
specification.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

http://dx.doi.org/10.1016/j.ress.2015.03.012
0951-8320/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: jussi.lahtinen@vtt.fi (J. Lahtinen).

Reliability Engineering and System Safety 139 (2015) 120–130

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2015.03.012
http://dx.doi.org/10.1016/j.ress.2015.03.012
http://dx.doi.org/10.1016/j.ress.2015.03.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.03.012&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.03.012&domain=pdf
mailto:jussi.lahtinen@vtt.fi
http://dx.doi.org/10.1016/j.ress.2015.03.012


The traditional model checking algorithms including the ones
described above have been successfully used to analyse individual
nuclear domain safety I&C systems, see e.g. [11,12], as well as satellite
onboard software designs [13]. However, in the nuclear domain it is
common to cope with hardware failures by implementing several
subsystems that execute the same physical function using design
diversity in software and/or hardware. It may be necessary to examine
these diverse subsystems simultaneously, e.g. because the specifica-
tions may in fact cover their combined behaviour, and to also
additionally check that the diverse subsystems have no unintended
interactions. Unfortunately, the currently available classical model
checking methods by themselves do not always scale to analysing
these large and complex combined systems. In our experience, the
Binary Decision Diagram (BDD)-based techniques by themselves have
proven to be inadequate in the analysis of our models in some of these
larger system configurations. The alternative SAT-based bounded
model checking (BMC) techniques [7,6] can often find counter-exam-
ples in many large systems. Some BMC techniques such as the
k-induction technique [8,9], and the PDR algorithm [10] can prove
properties, but in our experience the necessary CPU time and memory
needed for a proof can make the verification impractical for many real
life designs.

One classical approach to avoid the scaling problem is to use
abstraction. Intuitively, abstraction is the act of simplifying a model
with the intention of making the verification of the model more
efficient, whereas adding more detail to the model is called a
refinement. In systems where multiple diverse subsystems are pre-
sent, the whole system functionality is rarely needed to verify a
system property. Depending on the exact specification some sub-
systems or parts of subsystems may be irrelevant for proving the
specification, and can be abstracted. The abstractions we use in this
work are over-approximations. Over-approximation techniques tend
to relax constraints, e.g., by allowing a variable to also have values
that are not realistic. Over-approximation leads to a model that has
more behaviour but can be less complex to analyse. Because of the
possible unrealistic behaviour in the model, over-approximation can
lead to spurious counter-examples. [14] Since the over-approximated
model has more behaviour than the concrete model, the correctness
of the resulting abstract model implies also the correctness of the full
model when universal properties such as state invariants are
examined.

Unfortunately, creating such an abstract model for each checked
specification is non-trivial and requires a lot of manual work,
becoming tedious and thus also error prone. For the best efficiency
gains, the abstraction is tailored for each specification separately.

In this paper, we describe how these kinds of over-approximating
abstractions can be created fully automatically by using an iterative
abstraction refinement technique exploiting the modular structure of
the system. Our technique will (i) significantly reduce the amount of
manual work needed to create these abstractions, (ii) prove the system
correctness based on verification runs automatically performed on
these abstractions, and (iii) reduce the overall computational effort
required for model checking, enabling the model checking of larger
system models. Our approach is designed to be efficient at finding
proofs for properties, as we expect most of the designs at this stage of
inspection to actually be correct. For all properties that hold, the
algorithm will find some abstraction of the system.

In our technique, we require that the system is structured into
modules. Abstractions of the model are created by automatically
replacing a subset of the modules with stubs that can at each time
point non-deterministically give any value from any of their outputs.
These simplified modules are called interface modules. This approach
is similar to the compositional minimisation [15] technique.

In iterative abstraction refinement an initial abstraction is first
generated and model checked. If the examined property produces a
counter-example, the model is refined and the resulting new model is

verified again. The process is continued until the property is proved or
no further model refinement is possible.

In the model checking step of our abstraction refinement techni-
que three model checking algorithms (BDD-based, k-induction, PDR)
are run in parallel in a portfolio-based manner, similar to what is
described in [16].

The abstractions in our technique are refined using a two-phase
procedure. First, in the preliminary refinement phase, we obtain a
computationally manageable subset of the modules in which the
previously found counter-example becomes infeasible. This part of the
refinement procedure is based on traversing the dependency graph of
the modules. After the preliminary refinement phase we attempt to
minimise the size of the needed model refinement using an iter-
ative sampling procedure similar to delta debugging. Delta debugging
[17,18] is originally a technique for isolating failure causes of software
errors automatically. The techniqueworks by systematically narrowing
down failure-inducing circumstances until a minimal set remains. In
our work we use the same principles in order to minimise the size of
the refinement. The feasibility of the candidate refinements is repeat-
edly checked during both model refinement phases. These feasibility
checks are performed using k-induction [8,9] to see whether the
spurious counter-example of length k has been removed.

We have tested our technique, and report experimental results
from verifying two different systems with it. The first system is a
fictional case study that consists of two diverse safety systems. The
fictional system is used to demonstrate the technique in practice, and
to show more detailed examples of the system implementation. The
second system is an actual industrial emergency diesel generator
control system that is used for evaluating the performance of our
technique on a real life system. The system is safety-critical, as
emergency diesels are used e.g. in nuclear power plants to provide
electricity in case of power failures. In both case studies we have
compared our technique against three other model checking
approaches: classical BDD-based model checking, SAT-based k-induc-
tion, and PDR-based model checking. In the comparisons these
approaches used the full concrete model for verification. The results
show that for most of the properties our technique is able to find a
proof of correctness of the system more efficiently than the other
three approaches.

2. Verified systems

We have tested our algorithm by applying it on two case study
systems. The first is a fictional safety system we have constructed for
demonstration purposes. The other is a model of an actual emer-
gency diesel generator. The purpose of the emergency diesel model is
simply to provide some additional benchmark information on the
performance of the algorithm on a real-life industrial model.

2.1. Fictional system description

We have created a fictional system model for demonstration
purposes. The NuSMV model of the system is available online [19].
The fictional model consists of two safety systems. Safety system
1 reads temperature measurements and controls an actuator device (a
pump) if the measurements exceed a certain limit. Safety system 2 has
pressure measurements as input, and it controls two other actuator
devices. The systems are redundant, and the purpose of the pumps is
to cool down a process so that the temperature and pressure of the
underlying process remain sufficiently low.

The basic functionality in both of the safety systems is such that
if the measurements exceed the given limits, the safety system is
initiated and this fact is memorised. The safety systems are also
associated with particular timing sequences that are given to the
actuators when they are started.

J. Lahtinen et al. / Reliability Engineering and System Safety 139 (2015) 120–130 121



Download English Version:

https://daneshyari.com/en/article/805495

Download Persian Version:

https://daneshyari.com/article/805495

Daneshyari.com

https://daneshyari.com/en/article/805495
https://daneshyari.com/article/805495
https://daneshyari.com

