

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/issn/15375110

Review

Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review

Nikolaos Katsoulas ^{a,b,*}, Angeliki Elvanidi ^a, Konstantinos P. Ferentinos ^b, Murat Kacira ^c, Thomas Bartzanas ^b, Constantinos Kittas ^{a,b}

^a Department of Agriculture, Crop Production & Rural Environment, University of Thessaly, Volos, Greece

^b Institute for Research & Technology – Thessaly, Centre for Research and Technology – Hellas, Volos, Greece

^c Department of Agricultural and Biosystems Engineering, The University of Arizona, Tucson, AZ, United States

ARTICLE INFO

Article history: Received 5 July 2016 Received in revised form 22 September 2016 Accepted 4 October 2016

Keywords: Reflectance index Vegetation indices Remote sensing Water status Nutrient status

Multisensory platforms for remote sensing measurements offer the possibility to monitor in real-time the crop health status without affecting the crop and environmental conditions. The concept of the speaking plant approach, and plant response based sensing in general, could be valuable providing a better understanding of the interactions between the microclimate and the physical conditions of the plants. Early detection of plant stress is critical, especially in intensive production systems, in order to minimise both acute and chronic loss of productivity. Non-contact and non-destructive sensing techniques can continuously monitor plants and enable automated sensing and control capabilities. This paper reviews past research and recent advances regarding the sensors and approaches used for crop reflectance measurements and the indices used for crop water and nutrient status detection. The most practical and effective indices are those based on ground reflectance sensors data which are evaluated in terms of their efficiency in detecting plant water status under greenhouse conditions. Some possible applications of this approach are summarised. Although crop reflectance measurements have been widely used under open field conditions, there are several factors that limit the application of reflectance measurements under greenhouse conditions. The most promising type of sensors and indices for early stress detection in greenhouse crops are presented and discussed. Future research should focus on real time data analysis and detection of plant water stress using advanced data analysis techniques and to the development of indices that may not be affected by plant microclimate.

© 2016 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

Plant stress is caused by biotic or abiotic factors that adversely affect plant growth and significantly reduces productivity.

Plant stress is expressed in the plant canopy in many types of symptoms. Water stress, for example, closes stomata and impedes photosynthesis and transpiration, resulting in changes in leaf colour and temperature (Nilsson, 1995, p. 146) but other symptoms of water stress include morphological changes such as leaf curling or wilting due to loss of cell turgidity. Early detection of plant stress is very critical

^{*} Corresponding author. Department of Agriculture Crop Production & Rural Environment, University of Thessaly, Volos, Greece. E-mail address: nkatsoul@uth.gr (N. Katsoulas).

http://dx.doi.org/10.1016/j.biosystemseng.2016.10.003

^{1537-5110/© 2016} IAgrE. Published by Elsevier Ltd. All rights reserved.

Nomenclature		NIR	Near infrared region
ARVI	Atmospherically resistant vegetation index	NPh	Non phosphorylated
AVI	Average vegetation index	NPQI	Normalised phaeophy Non photochemical q
С	Sensors that measure plant reflectance in contact	NPQ NWI	Normalised water ind
	with the leaf	OSAVI	Optimization soil adju
ChF	Chlorophyll fluorescence	PAR	Photosynthetic active
Chl	Chlorophyll content	PRI	Photochemical reflect
CO ₂	Carbon dioxide	PSII	Photosystem II
CWSI	Crop water stress index	PSRI	Plant senescence refle
DVI	Difference vegetation index	PWC	Plant water content
ETc	Crop evapotranspiration	RI	Reflectance index
EVI	Enhanced vegetation index	rNDVI	
eNDVI	Enhanced normalised difference vegetation index	rNDVI	Red normalised differ
F	Fluorescence		Remote sensing base
FOV	Field of view		Remote sensing base
FR	Fluorescence ratio	K3/FOV	measures in specific f
Fwbi	Floating position water band index	RS	Remote sensing
GNDV	Green normalised difference vegetation	RVI	Red vegetation index
GNDVI	Normalised difference vegetation index on	RWC	Relative water conten
	greenness	SAVI	Soil adjusted vegetati
gs	Stomatal conductivity	SB	Single band
GVI	Green vegetation index	SIPI	Structure independer
LAI	Leaf area index	SIWSI	Shortwave infrared w
	Light emitting diode	sNDVI	Similar normalised di
	Middle infrared region	Sp	Spectroradiometer in
	Modified normalised difference vegetation index	sPRI	Similar photochemica
	Modified normalised difference vegetation index	SR	Simple ratio
Macc01	Maccioni index	SR	Simple ratio
D	Derivative Reflectance at D690	SWC	Soil water content
DD	Datt Derivative	Tc	Canopy temperature
mrNDVI	Modified red edge normalised difference	TCARI	Transformed chlorop
	vegetation index	10/110	reflectance index
mrSRI	Modified red edge simple ratio index	VI	Vegetation index
MSI	Moisture stress index	VIS	Visible spectrum
MTCI	Merris terrestrial chlorophyll index		Vogelman red edge in
N	Nitrogen	VOG KLI VPD	Vapour pressure defic
ND	Normalised difference	WI	Water index
	Normalised difference infrared index	Y	Yield
NDVI	Normalised difference vegetation index	ΔPRI	Delta photochemical
NDWI	Normalised difference vegetation index		Denta priotocriennical

ct	NPh	Non phosphorylated thylakoids
	NPQI	Normalised phaeophytinization index
	NPQ	Non photochemical quenching
	NWI	Normalised water index
	OSAVI	Optimization soil adjusted vegetation
	PAR	Photosynthetic active radiation
	PRI	Photochemical reflectance index
	PSII	Photosystem II
х	PSRI	Plant senescence reflectance index
	PWC	Plant water content
	RI	Reflectance index
	rNDVI	Red edge normalised difference vegetation index
	rNDVI	Red normalised difference vegetation index
	RS/CAM	Remote sensing based on imaging systems
	RS/FOV	Remote sensing based on spectroradiometer that
		measures in specific field of view of the target
R S S S S	RS	Remote sensing
	RVI	Red vegetation index
	RWC	Relative water content
	SAVI	Soil adjusted vegetation index
	SB	Single band
	SIPI	Structure independent pigment index
	SIWSI	Shortwave infrared water stress index
	sNDVI	Similar normalised difference vegetation index
-	Sp	Spectroradiometer in laboratory
x	sPRI	Similar photochemical reflectance index
~	SR	Simple ratio
	SR	Simple ratio
:	SWC	Soil water content
	Тс	Canopy temperature
	TCARI	Transformed chlorophyll absorption in
		reflectance index
	VI	Vegetation index
	VIS	Visible spectrum
		Vogelman red edge index
	VPD	Vapour pressure deficit
	WI	Water index
	Y	Yield
	ΔPRI	Delta photochemical reflectance index

especially in intensive production systems in order to minimise both acute and chronic loss of productivity.

Plant water stress may be the result of a single parameter or a combination of environmental conditions (e.g. air temperature, relative humidity, solar radiation intensity, air velocity) root conditions (e.g. available water in the root, electrical conductivity in the root zone), the microclimate and plant genetic traits. Methods such as substrate water content (for soilless crops) or soil water tension, leaf water potential and sap flow, among others, have been widely used to help describe plant water status. However, soil or substrate water content indicates the availability of water in the root zone and that is not always directly correlated with the water status of the plant. In addition, although leaf water potential and sap flow measurements provide direct information about plant

water status, they require plant contact or destructive sampling which is difficult to realise in commercial scale. Noncontact and non-destructive sensing techniques can continuously monitor plants and enable automated sensing and control capabilities (Ling, Giacomelli, & Russell, 1996).

The dynamic response of plants to the changes of their environment is often called 'speaking plant' (Takakura, Kozai, Tachibana, & Jordan, 1974). The concept of the speaking plant approach and plant response - based sensing is valuable to have a better understanding of the interactions between the microclimate and the physical conditions of the plants (Kacira, Sasae, Okushima, & Ling, 2005). Thus, in this approach, the physical responses of the plants to the environmental changes are monitored and the information is utilised to identify conditions which put plants under stress Download English Version:

https://daneshyari.com/en/article/8054951

Download Persian Version:

https://daneshyari.com/article/8054951

Daneshyari.com