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a b s t r a c t

Environmental stress screening (ESS) is widely used in industry to eliminate early or latent failures.
However, the appropriate stochastic modeling for ESS has not been yet suggested in the literature. In this
paper, we develop the corresponding stochastic model and analyze the effect of the ESS in terms of
population characteristics. In our model, during the ESS, the manufactured items are exposed to a stress
with the relatively large magnitude, which can result either in immediate failures of items or in the
increased susceptibility to future failures. The corresponding optimization problems for obtaining the
optimal level of the stress magnitude are also formulated and discussed. An illustrative example is
considered.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The failure rate of manufactured items often initially decreases,
which is usually called the “infant mortality”. The most popular
explanation of this phenomenon is that a population is a mixture
of weak items (i.e., items with shorter lifetimes) and strong ones
(i.e., items with longer lifetimes). As the “weakest populations are
dying out first”, this can result in the initially decreasing FR. In
order to eliminate weak items and, therefore, to improve the
‘quality’ of manufactured items a burn-in procedure is usually
employed in practice (see, e.g., Mi [1–3], Cha [4], Yun et al. [5], Wu
et al. [6], Kim and Kuo [7], Kim [8], Cha and Finkelstein [9]). Thus,
the ‘sufficient condition’ for employing the traditional burn-in is
that the items should have the initially decreasing failure rate.

However, more thorough analysis (e.g., Fiorentino and Saari
[10], Yan and English [11]) of mixed populations indicates that
weak subpopulations can also result from the latent defects that
cause additional failure modes. In this case, the FR does not
necessarily initially decrease (see Example 1 in Cha and Finkelstein
[12]) and, therefore, the traditional burn-in procedure is not
effective at all. On the other hand, another procedure that is
usually referred to as the environmental stress screening (ESS) can
help in this case. During the ESS, a short-time excessive stress is

applied to eliminate weak items with latent defects. Thus, distinct
from burn-in, the ESS can be understood as the method of
elimination of items with “additional failure modes”. Moreover,
as it was mentioned, the ESS does not require the initially
decreasing FR. The formal difference between the ESS and burn-
in was only recently clarified in our previous work (see Cha and
Finkelstein [12]). Although there have been some empirical studies
on the ESS in the literature, Cha and Finkelstein [12] is the first
work to deal with adequate stochastic modelling, analysis and
optimization of the ESS. Therefore, we feel that the second paper
dealing with a different stochastic model is quite appropriate and
justified.

In the current paper, we develop a new stochastic model for the
ESS, where an external shock can either destroy an item with a
given probability or increase the ‘defect size’ of the defective item
by a random amount. Our previous paper (Cha and Finkelstein
[12] ) is based on the ‘extreme shock model’ (there is no wear
(degradation) in the paper), whereas here we employ direct
competing risks framework considering gradual degradation effect
of the system due to increasing defect size. Thus, the stochastic
model for ESS in the current paper is different in essence and can
be applied to, e.g., solder joints, where defective items have
microcracks which gradually grow as the items experience exter-
nal shocks and cause the failure of items when they reach a
threshold level.

The paper is organized as follows. In Section 2 we discuss
general supplementary results for extreme-type and ‘combined’
shock models to be extensively used in the forthcoming sections.
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Section 3 is devoted to the detailed probabilistic analysis of the
suggested model. In Section 4, we discuss and illustrate the
corresponding optimization problem. Finally, some concluding
remarks are given in the last section.

2. Preliminaries

In this section, we discuss some general supplementary results
on shocks modeling that will be extensively used for the descrip-
tion and analysis of the ESS model in the rest of this paper. These
preliminaries are mostly based on our previous work (Cha and
Finkelstein [13–14]).

Denote by fNðtÞ; tZ0g the nonhomogeneous Poisson process
(NHPP) of shocks with rate λðtÞ and arrival times Ti; i¼ 1;2;….
Assume that this shock process is the only cause of failures for the
system and that each shock results in the system's failure with
probability pðtÞ and has no effect on a system with probability
qðtÞ ¼ 1�pðtÞ.

Denote the corresponding time to failure of the system by TS. It
is well-known (see, e.g., Finkelstein [15] and references therein)
that the survival probability of the system in this model, which is
often called in the literature the extreme shock model, is

PðTS4tÞ � FSðtÞ ¼ exp �
Z t

0
pðuÞ λðuÞdu

� �
; ð1Þ

whereas the corresponding FR λSðtÞ is
λSðtÞ ¼ pðtÞλðtÞ; tZ0: ð2Þ

For convenience, in what follows we will refer to this shock
model as the ‘pðtÞ3qðtÞ model’.

Assume now that the ith shock is critical (i.e., it results in an
immediate failure) with probability pðTiÞ and with probability
qðTiÞ ¼ 1�pðTiÞ, it increases the wear of a system by a random

increment WiZ0 (non-critical shock). In accordance with this
setting, the random wear of the system at time t is (given no
critical shock has occurred until time t)

WðtÞ ¼
XNqðtÞ

i ¼ 0

Wi;

where NqðtÞ is the ‘thinned’ original process with the thinning
probability qðtÞ, representing the total number of non-critical
shocks in ð0; t�, and, formally, W0 ¼ 0 corresponds to the case
NqðtÞ ¼ 0 when there are no shocks in ð0; t�. Failure occurs when a
critical shock occurs or WðtÞ reaches the random boundary R.
Therefore, denoting by ECðtÞ the event that no critical shock has
occurred until time t,

PðTSZt jNðsÞ;0rsrt; W1;W2;…;WNðtÞ;RÞ
¼ PðECðtÞjNðsÞ;0rsrt; W1;W2;…;WNðtÞ;RÞ
�PðWðtÞrRjNðsÞ;0rsrt; W1;W2;…;WNðtÞ; R; ECðtÞÞ

¼ ∏
NðtÞ

i ¼ 0
qðTiÞI

XNðtÞ
i ¼ 0

WirR

 !
; ð3Þ

where qðT0Þ � 1.
Eq. (3) is very general and certain assumption should be made

in order to integrate out the corresponding uncertainties and
to obtain the analytically tractable solution. Therefore, let
Wi; i¼ 1;2;… be the i.i.d. r.v.’s and R be exponentially distributed
with parameter θ. Then PðTSZtÞ can be obtained explicitly by
direct derivation (Theorem 1 of Cha and Finkelstein [13]) as

P TSZtð Þ ¼ E ∏
N tð Þ

i ¼ 0
q Tið Þ

 !
Uexp �θ

XN tð Þ
i ¼ 0

Wi

n o" #

¼ exp �
Z t

0
p xð Þþq xð Þ 1�MW �θð Þð Þð Þλ xð Þdx

� �
; tZ0;

Acronyms

Cdf cumulative distribution function
FR instantaneous failure rate (function)
pdf probability density function
r.v. random variable
Sf survivor function

Notation

fNðtÞ; tZ0g a nonhomogeneous Poisson process of shocks
λðtÞ the intensity function of the nonhomogeneous Pois-

son process of shocks
Ti; i¼ 1;2;… sequential arrival time of the nonhomogeneous

Poisson process; a r.v.
pðtÞ the probability of immediate system failure on a shock

occurred at time t; qðtÞ ¼ 1�pðtÞ
fNqðtÞ; tZ0g the ‘thinned’ original process with the thinning

probability qðtÞ
Wi, i¼ 1;2;… the random increment of wear at i th shock; a r.

v.
MW ðUÞ the moment generating function of Wi’s
WðtÞ the random wear of the system at time t (given no

critical shock has occurred until time t)
R random threshold level which defines the system

failure due to the accumulated wear
TN lifetime of a non-defective item; a r.v.
rðtÞ baseline FR of the system in the absence of shocks

WM the initial wear; a r.v.
TE the lifetime in the field use that accounts only for the

external shock failure mode of defective items (i.e., the
lifetime without any other causes of failure)

T the lifetime of the system before ESS; a r.v.
λT ðtÞ the FR of T
s the magnitude of the stress imposed during the ESS
sn the optimal magnitude of the stress
αðsÞ the probability of immediate system failure during the

ESS (the function of s)
ρðsÞ the proportion of non-defective items which becomes

defective due to the ESS (the function of s)
TESS the population distribution in field use after the ESS; a

r.v.
λEðt; sÞ the FR of TESS as the function of s
FEðt; sÞ the Sf of TESS as the function of s
π, 1�π the proportion of the non-defective and the defective

items, respectively
τ the mission time of an item in field operation
MðsÞ the mean time to failure of an item in field operation

as a function of s
cðsÞ the total expected cost
csr the shop replacement cost
cs the cost for conducting the ESS
K the gain given when the mission (of length τ) is

successful
C the penalty given when the mission (of length τ) is not

successful
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