

Available online at www.sciencedirect.com

Solar Energy Materials & Solar Cells

Solar Energy Materials & Solar Cells 90 (2006) 3108-3114

www.elsevier.com/locate/solmat

15% Efficiency CdS/CdTe thin film solar cells using CdS layers doped with metal organic compounds

Kengo Matsune^a, Hiroyuki Oda^a, Toshihiko Toyama^{a,*}, Hiroaki Okamoto^a, Yuriy Kudriavysevand^b, René Asomoza^b

^aDepartment of Systems Innovation, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560-8531, Japan

^bSección de Electrónica del Estado SólidoDepartamento de Ingeniería Eléctrica Cinvestav, Av. IPN 2508, 07360 México, D.F., México

Available online 25 July 2006

Abstract

For improving the photovoltaic performance of CdS/CdTe thin film solar cells, the CdS window layer is one of the most crucial factors. Here we demonstrate the photovoltaic performances of the *lowenvironmental-load* CdS/CdTe solar cell employing the CdS layer doped with various metal organic (MO) compounds, i.e., $(CH_3)_2SnCl_2$, $(C_6H_5)_3GeCl$, $(CH_3CO_2)_3In$, $[(C_2H_5)_2NCS_2]_2Zn$. Due to the MO doping, the degree of (1 1 1) preferential orientation of CdTe on the CdS layer is improved remarkably, influencing the increases in V_{oc} and F.F. Being almost independent of the kind of the MO compounds, the short circuit current increases due to increasing optical transmittance of the MO-doped CdS layers. As a result, utilizing MO-doped CdS, we have achieved the conversion efficiency of 15.1%. © 2006 Elsevier B.V. All rights reserved.

Keywords: Solar cell; CdTe; CdS; Metal organic compounds

1. Introduction

Cadmium telluride is one of the most ideal materials for the photovoltaic application because of the following well-known reasons: the optimum band gap of 1.51 eV for solar spectrum and the direct band gap yielding high optical absorption coefficient. The energy conversion efficiency over 16% has been already realized in the R&D level [1,2]. However, the thickness of the photovoltaic layer, which is usually $5-10 \,\mu\text{m}$, must be reduced from a

^{*}Corresponding author. Tel.: +81668506317; fax: +81668506316. *E-mail address:* toyama@ee.es.Osaka-u.ac.jp (T. Toyama).

^{0927-0248/} $\$ - see front matter \odot 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.solmat.2006.06.030

viewpoint of the environmental load related to the Cd compounds. We have developed the *low-environmental-load* CdS/CdTe thin film solar cells with a photovoltaic layer thickness of $< 3 \mu m$ [3–6]. For the further improvement of the photovoltaic performance, the CdS window layer is one of the most crucial factors [4–6] because it acts as a window layer, as a seed layer for the CdTe growth, and as a sulfur source for the CdTe_{1-x}S_x mixed crystal layer lying at CdS/CdTe metallurgical interface [7,8]. We have found that doping of the organic tin compound into CdS is effective for improving the photovoltaic performance, and already achieved a high conversion efficiency of 14.8% [6].

In this paper, we present experimental results the CdS layers doped with various metal organic (MO) compounds, i.e., $(CH_3)_2SnCl_2$, $(C_6H_5)_3GeCl$, $(CH_3CO_2)_3In$, $[(C_2H_5)_2NCS_2]_2Zn$. Structural changes due to MO doping found both in CdS and CdTe are described. Additionally, results on applying the CdS layers doped with the MO compounds the *low-environmental-load* CdS/CdTe solar cells are demonstrated.

2. Experimental

The CdS layer was deposited by metal organic chemical vapor deposition (MOCVD) with a thickness of 80 nm on a glass substrate (Corning glass #1737) coated by indium tin oxide (ITO). The MO compound, (CH₃)₂SnCl₂, (C₆H₅)₃GeCl, (CH₃CO₂)₃In or $[(C_2H_5)_2NCS_2]_2Zn$, was mixed into the MO CdS source. The doping concentration of the MO compound was changed up to 1 wt%. The CdTe layer was fabricated on the CdS layer by close-spaced sublimation (CSS) with a thickness of 2.5–2.9 µm. The detailed other fabrication procedures of the CdS/CdTe solar cells are described in our previous reports [4]. Elemental analysis was performed by secondary ion microprobe mass spectrometry (SIMS) (CAMECA IMS-6f). The surface micrograph of the CdS layer was taken by fieldemission scanning electron microscope (SEM) (JEOL JSM 6340F). X-ray diffraction (XRD) measurements were carried out with a diffractometer (Rigaku RINT 2200) with Cu-K α radiation. From the XRD peaks, the degree of (111) preferential orientation of CdTe, p(1 1 1), was derived in accordance with the method of Harris [9], while the (103) CdS grain size was estimated by the Scherrer's formula [10]. The optical transmittance of the CdS layers was measured by a double-monochromatic spectrometer (Shimadzu UV-3100PC). Illuminated current-voltage (J-V) characteristics were measured under the standard condition (AM1.5, 100 mW/cm²). The quantum efficiency (QE) spectrum was taken with a conventional lock-in system. Dark current–voltage (J - V) characteristics were measured with a pico-anmeter (HP 4140B).

3. Results and discussion

Fig. 1 shows the SIMS depth profiles of Sn and Cl in the undoped CdS layer deposited on the ITO-coated glass substrate compared to those of the CdS layer doped with $(CH_3)_2SnCl_2$. The doping concentration into the CdS source was 1 wt%. Even in the undoped CdS layer, Sn and Cl are presented with the atomic concentrations of 2×10^{17} and 4×10^{17} atoms/cm³, respectively. This is likely to be caused by diffusion from the ITO/ glass substrate. Meanwhile, the atomic concentrations of Sn and Cl in the CdS layer doped with $(CH_3)_2SnCl_2$ increases to 6×10^{17} and 4.5×10^{18} atoms/cm³, respectively. Although the doping is not so efficient, the Sn concentration in the CdS layer actually increases. Download English Version:

https://daneshyari.com/en/article/80550

Download Persian Version:

https://daneshyari.com/article/80550

Daneshyari.com