
Automated generation of partial Markov chain from high
level descriptions

P.-A. Brameret a,n, A. Rauzy b, J.-M. Roussel a

a LURPA, ENS Cachan, Univ Paris-Sud, F-94235 Cachan, France
b CHAIRE BLÉRIOT-FABRE, LGI École Centrale de Paris, Grande voie des vignes, 92295 Châtenay-Malabry cedex, France

a r t i c l e i n f o

Article history:
Received 19 August 2014
Received in revised form
12 February 2015
Accepted 22 February 2015
Available online 3 March 2015

Keywords:
Model Based Safety Assessment
Markov chains
State space build
AltaRica

a b s t r a c t

We propose an algorithm to generate partial Markov chains from high level implicit descriptions, namely
AltaRica models. This algorithm relies on two components. First, a variation on Dijkstra's algorithm to
compute shortest paths in a graph. Second, the definition of a notion of distance to select which states
must be kept and which can be safely discarded.

The proposed method solves two problems at once. First, it avoids a manual construction of Markov
chains, which is both tedious and error prone. Second, up the price of acceptable approximations, it
makes it possible to push back dramatically the exponential blow-up of the size of the resulting chains.

We report experimental results that show the efficiency of the proposed approach.
& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Markov chains are pervasive in Probabilistic Safety Analyses.
They make it possible to assess performance indicators for systems
with complex control structures such as cold spare units, or
systems with limited number of resources. However, they suffer
from the exponential blow-up of the number of states and
transitions. This drawback has two aspects. First, the manual
construction of Markov chains is both tedious and error prone.
Second, assessment of large Markov chains is very resource
consuming.

A way to solve the first problem consists in generating Markov
chains from higher level descriptions, typically Generalized Sto-
chastic Petri Nets [1] or AltaRica models [2]. These descriptions
represent the state space in an implicit way. To obtain the Markov
chain, a space exploration algorithm is used: starting from the
initial state, states and transitions are progressively added to the
resulting chain, until no more state or transition can be added.

However, only some of the many states of a very large Markov
chain are relevant to the calculation of reliability indicators. The odds
of reaching them is very low. Therefore, they have almost no influence
on the calculated quantities and can be safely ignored. The same idea
is behind algorithms that consider failure sequences in turn, while
keeping only probable enough sequences; see e.g. [3–5]. What we

propose here is rather to generate a relevant fraction of the whole
Markov chain. Technically, the idea is to explore the underlying state
graph at a bounded depth, i.e. to keep states (and transitions between
these states) that are at the shortest distance from the initial state.
Our algorithm relies on two components:

� An efficient way to explore the underlying graph in order to
avoid revisiting states. To do so, we apply a variation of
Dijkstra's algorithm to determine on-the-fly shortest paths in
a graph [6].

� A suitable notion of distance which is basically the probability
of the path and that is used as an indicator of relevance for
states.

The combination of these two components proves extremely
efficient. We present here examples for which a partial chain,
whose size is a tiny fraction of the complete chain, makes it
possible to approximate system unreliability with a relative error
less than 0.25%.

It is not possible to guarantee a priori the quality of the approxima-
tion (to get a “probably approximately correct” result according to
Valiant's scheme for approximation algorithms [7]). However, we show
that it is possible to calculate a posteriori an upper bound of the
probability of discarded states. This bound provides the analyst with a
means to assess the accuracy of the approximation.

The method we propose in this paper is a contribution to the
so-called Model-Based Safety Analyses: it makes Markov chains an
effective tool to assess large high level models. This tool is of
paramount interest for systems that show dependencies amongst
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failures, i.e. systems for which combinatorial representations (such
as Fault Trees) are not suitable.

The remainder of this paper is organized as follows. Section 2
introduces the context of the present work, and discusses related
works. Section 3 presents the algorithm. Section 4 discusses issues
regarding the practical implementation of the algorithm and the
accuracy of the approximation. Finally, Section 5 presents experi-
mental results.

2. Problem statement

2.1. Context

Classical formalisms used in safety analyses, such as Fault Trees
and Markov chains, are well mastered by analysts. Moreover, they
provide a good tradeoff between the expressiveness of the modeling
formalism and the efficiency of assessment algorithms. They stand
however at a low level. As a consequence, there is a significant
distance between the specifications of the system under study and
the safety models of this system. This distance is both error prone and
a source of inefficiency in the modeling process. Not only are models
difficult to share amongst stakeholders but any change in the
specifications may require a tedious review of safety models.

Hence the idea is to describe systems with high level modeling
formalisms and to compile these high level descriptions into lower
level ones, typically Fault Trees and Markov chains, for which
efficient assessment algorithms exist. AltaRica 3.0 is such a high
level formalism (see e.g. [8]).

The semantics of AltaRica 3.0 is defined in terms of Guarded
Transition Systems [9]. Prior to most of any assessment, including
compilation into Markov chains, AltaRica 3.0 models are flattened
into Guarded Transition Systems as illustrated Fig. 1 which gives
an overview of the AltaRica 3.0 project.

As defined in [8], a Guarded Transition System (GTS for short) is
a quintuple 〈V ; E; T ;A; ι〉, where

� V ¼ S⊎F is a set of variables, divided into two disjoint subsets:
the subset S of state variables and the subset F of flow variables.

� E is a set of events.
� T is a set of transitions. A transition is a triple 〈e;G; P〉, denoted

as e : G-P, where eAE is an event, G is a guard, i.e. a Boolean

formula built over V, and P is an instruction built over V, called
the action of the transition. The action modifies only state
variables.

� A is an assertion, i.e. an instruction built over V. The assertion
modifies only flow variables.

� ι is the initial assignment of variables of V.

In a GTS, states of the system are represented by variable assign-
ments. A transition e : G-P is said to be fireable in a given state σ if
its guard G is satisfied in this state, i.e. if GðσÞ ¼ true. The firing of
that transition transforms the state σ into the state σ0 ¼ AðPðσÞÞ, i.e. σ0

is obtained from σ by applying successively the action of the
transition and the assertion.

Guarded Transition Systems are implicit representations of
labeled Kripke structures, i.e. of graphs whose nodes are labeled
by variable assignments and whose edges are labeled by events.
The so-called reachability graph Γ ¼ 〈Σ;Θ〉 of a GTS 〈V ; E; T ;A; ι〉 is
the smallest Kripke structure such that

� ιAΣ.
� If σAΣ, e : G-P is a transition of T and GðσÞ ¼ true (the

transition is fireable in σ), then σ0 ¼ AðPðσÞÞAΣ and
e : σ-σ0AΘ.

If exponential distributions are associated with events of E, the
Kripke structure Γ ¼ 〈Σ;Θ〉 can be interpreted as a Continuous Time
Homogeneous Markov Chain (for sake of brevity we shall just write
Markov Chain in the remainder of the paper). The reliability indicators
(such as system unavailability) can be defined by associating a reward
(a real number) with each state of the chain.

The reachability graph may be very large, even for small GTS.
Assume for instance that we model a system made of n indepen-
dent, repairable components. Then, the number of variables of V is
n, the number of transitions of T is 2� n, but the number of states
of Σ is 2n and the number of transitions of Θ is n� 2n. Even when
the components of the system are not fully independent, safety
models tend to show the same picture, i.e. a number of states
which is exponential in the number of components (or the
variables in the GTS) and a number of transitions which is a small
multiple of the number of states.

The idea is thus to generate (still starting from the initial state and
applying the above principle) only a fraction of the Kripke structure,

Fig. 1. Overview of the AltaRica 3.0 project.
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