

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/issn/15375110

Research Paper

Development of stability indicators for dynamic Phase I overturn of conventional farm tractors with front axle pivot

Zhen Li ^a, Muneshi Mitsuoka ^{b,*}, Eiji Inoue ^b, Takashi Okayasu ^b, Yasumaru Hirai ^b

ARTICLE INFO

Article history:
Received 24 October 2014
Received in revised form
26 March 2015
Accepted 30 March 2015
Published online

Keywords:

Conventional farm tractor Front axle pivot 3D mathematical model Dynamic Phase I overturn Tractor stability indicator Critical speed Tractor overturns are serious potential hazards for operators. While rollover protective structures (ROPS) protect operators passively, greater protection can be achieved through theoretical prediction of a potential overturn. Given effective warning, an operator can act to correct a tractor's motion when a tyre is about to lose contact with the ground. Such a loss of contact is associated with the initiation of a Phase I tractor overturn. However, it remains unclear how the initiation of tractor overturn is influenced by certain factors. Furthermore, the current mathematical models for tractors should be further extended for general utilisation. This study was conducted to develop stability indicators based on a more general model for dynamic Phase I tractor overturn. We considered practical tractor configurations and motion characteristics in a threedimensional (3D) reference frame in formulating the mathematical model. Tractor stability indicators for overturn and sideslip were derived from force calculations. A parametric study was conducted using an example tractor. The tractor speed and slope angle were found to affect the overturning stability significantly. The coefficient of maximum static friction was found to be the main factor contributing to tractor sideslip. Critical tractor speeds for various ground conditions were identified by considering the zero values of the tractor stability indicators. The critical tractor speed was determined as a function of the maximum static friction and the slope angle. By providing a display device based on ergonomics principles, the results of this study can be further implemented in the form of guidance to operators.

© 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.

^a Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

^b Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

^{*} Corresponding author. Tel.: +81 926422929.

Nomeno	lature	f_{f_limit}	maximum static friction force acting on the front tyres in the Y direction [N]
Symbols		F_{py}	reaction force between the two main tractor parts
α	lateral slope angle [rad]	РУ	in the Y direction [N]
θ	pitch angle in local coordinates [rad]	F_{pz}	reaction force between the two main tractor parts
$\theta_{\mathtt{1}}$	initial angle between the horizontal line and the	P2	in the Z direction [N]
-	line connecting the COG _r and the front axle pivot,	f_r	lateral friction force acting on the rear tyres in the
	from side view [rad]	<i>J.</i>	Y direction [N]
θ_2	initial angle between the horizontal line and the	f_{r_limit}	maximum static friction force acting on the rear
_	line connecting the COG _r and a modelled rear tyre	J	tyres in the Y direction [N]
	(spring–damper unit), from side view [rad]	F_{si}	static ground supporting force on tyre i in the Z
μ	coefficient of maximum static friction between		direction for non-sloping conditions [N]
,	the tyre and the ground in a direction parallel to	F_{zi}	dynamic ground supporting force on tyre i in the Z
	the rotational axis of the tyre [–]	2.	direction [N]
π	circumference ratio, Pi [–]	g	acceleration due to gravity [m s ⁻²]
Φ	roll angle in global coordinates [rad]	H _f	height of the COG _f [m]
$arphi_1$	initial angle between the front axle and the line	h_f	length of the line segment between the COG _r and
, ,	connecting the front axle pivot and a modelled	J	the tractor front axle pivot, from side view [m]
	front tyre (spring-damper unit), from back view	H_r	height of the COG _r [m]
	[rad]	h_r	length of the line segment between the COG _r and
φ_2	initial angle between the horizontal line and the	,	the point connecting the tractor main body (rear
12	line connecting the COG _r and a modelled rear tyre,		end) and a modelled rear tyre, from side view [m]
	from back view [rad]	i_o	tractor stability indicator against overturn [–]
$arphi_f$	roll angle of the tractor anterior part in local	is	tractor stability indicator against sideslip [–]
. ,	coordinates [rad]	I_{xf}	tractor moment of inertia about the x_f axis, i.e., the
φ_r	roll angle of the tractor posterior part in local	λ)	longitudinal axis of the front end of a tractor
	coordinates [rad]		[kg m ²]
ψ	yaw angle in local coordinates [rad]	I_{xr}	tractor moment of inertia about the x_r axis, i.e., the
ω_{X}	component of tractor angular velocity about the X	Al .	longitudinal axis of the main body (rear end) of a
21	axis [rad s ⁻¹]		tractor [kg m ²]
$\omega_{ m Y}$	component of tractor angular velocity about the Y	I_{yr}	tractor moment of inertia about the y_r axis, i.e., the
	axis [rad s ⁻¹]	,	axis transversal to the motion direction of a
ω_{Z}	component of tractor angular velocity about the Z		tractor, passing through the COG of its main (rear)
	axis [rad s ⁻¹]		end [kg m²]
Α	coordinate transformation matrix from local to	j_f	perpendicular distance from the point connecting
	global coordinates [–]		the tractor front end and a modelled front tyre to
A^{T}	transpose of the matrix A [–]		the longitudinal axis through the front axle pivot
A_X	transformation matrix due to rotation about the X		[m]
	axis [–]	j _r	perpendicular distance from the point connecting
A_{Y}	transformation matrix due to rotation about the Y		the tractor main body and a modelled rear tyre to
	axis [–]		the longitudinal axis through the front axle pivot
A_Z	transformation matrix due to rotation about the Z		[m]
	axis [–]	k_i	vertical spring constant of tyre i [N m ⁻¹]
c_i	vertical viscous damping coefficient of tyre i	L	length of the obstacle [m]
	$[{ m N \ s \ m^{-1}}]$	L_1	effective obstacle length during the obstacle-
D	height of the obstacle [m]		surmounting passage of the front wheel(s) [m]
e_{fy}	lateral distance between the COG_f and the pivot	L_2	effective obstacle length during the obstacle-
	axis [m]		surmounting passage of the rear wheel(s) [m]
e_{fz}	vertical distance between the COG _f and the pivot	\mathbf{L}_f	horizontal distance between the COG and the
	axis [m]		front wheel [m]
e_{G}	vertical distance between the COG and the pivot	l_f	horizontal distance between the COG_r and the
	axis [m]		front wheel [m]
e_{ry}	lateral distance between the COG _r and the pivot	L_r	horizontal distance between the COG and the rear
	axis [m]		wheel [m]
e_{rz}	vertical distance between the COG _r and the pivot	l_r	horizontal distance between the COG_r and the rear
	axis [m]		wheel [m]
f_f	lateral friction force acting on the front tyres in the	m	total mass of the tractor [kg]
	Y direction [N]	m_f	mass of the tractor front end [kg]

Download English Version:

https://daneshyari.com/en/article/8055165

Download Persian Version:

https://daneshyari.com/article/8055165

Daneshyari.com