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a b s t r a c t

The first order approximate reliability method (FARM) and second order approximate reliability method
(SARM) are formulated based on evidence theory in this paper. The proposed methods can significantly
improve the computational efficiency for evidence-theory-based reliability analysis, while generally
provide sufficient precision. First, the most probable focal element (MPFE), an important concept as the
most probable point (MPP) in probability-theory-based reliability analysis, is searched using a
uniformity approach. Subsequently, FARM approximates the limit-state function around the MPFE using
the linear Taylor series, while SARM approximates it using the quadratic Taylor series. With the first and
second order approximations, the reliability interval composed of the belief measure and the plausibility
measure is efficiently obtained for FARM and SARM, respectively. Two simple problems with explicit
expressions and one engineering application of vehicle frontal impact are presented to demonstrate the
effectiveness of the proposed methods.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainties widely exist in practical engineering problems, which
should be appropriately quantified and controlled for the reliability
and safety of a product [1,2]. Usually, uncertainties can be classified
into two distinct types: aleatory and epistemic uncertainties [3–5].
Aleatory uncertainty describes the inherent variation associated with a
physical system or environment, which is often dealt with probability
theory [6–9]. Epistemic uncertainty refers to the lack of information or
data in some phases of the modeling process, which, therefore, can be
reduced with the collection of more information. The probability
theory has been traditionally used to model epistemic uncertainty,
generally by picking some familiar probability distribution and its
associated parameters to represent one’s belief in the likelihood of
possible values. However, for some distributions (e.g. normal or
weibull), even small epistemic uncertainty in probability distribution
parameters can cause large changes in the tails of the distributions,
which may result in unnegligible influence on the reliability analysis
results for practical engineering problems [10].

Evidence theory was proposed and developed by Dempster and
Shafer [11,12], which provides a promising supplement to prob-
ability theory for representation of epistemic uncertainty [13].
First, evidence theory employs a much more flexible framework

with respect to the body of evidence and its measures. For
example, when information is enough to construct parameter
probability distributions, evidence theory can provide an equiva-
lent description to probability theory model. Second, evidence
theory can deal directly with situations in which both aleatory and
epistemic uncertainties exist. This capability is important because
the available data in many engineering problems commonly
contain both interval-valued information (epistemic uncertainty)
and probability distributions (aleatory uncertainty). Third, evi-
dence theory does not require the assumption of input probability
distributions when there is a lack of information.

Due to the above advantages, evidence theory has recently
been applied in structural reliability analysis and design. Some
exploratory work in this area has been reported, which can be
classified into several main categories:

(i) Comparison between evidence theory and the other uncertainty
analysis models. Several methods for obtaining the evidence
theory and probability boxes structures were introduced in
[14], which shows that these two structures can be inter-
convertible. Probability theory, evidence theory, possibility
theory and interval analysis were explored and compared in
uncertainty representation and propagation with some
benchmark problems [15]. Evidence theory and Bayesian
theory were compared in uncertainty modeling and decision
making, which indicates that Bayesian probabilities can help
make a decision when there is considerable uncertainty [16].
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(ii) Reliability analysis. An evidence theory model considering
dependence between parameters was formulated for the struc-
tural reliability analysis [17]. A structural reliability analysis
method using evidence theory was developed by introducing a
non-probabilistic reliability index approach [18]. By integra-
ting the moment concept and finite element method, a static
and dynamic response analysis approach was formulated for
structures with epistemic uncertainty [19]. A sampling-based
approach [20] and a semi-analytic approach [21] were devel-
oped for sensitivity analysis of the uncertainty propagation
problems using evidence theory.

(iii) Reliability based design optimization. A design optimization
method was developed to handle the mixed epistemic and
random uncertainties, in which the vicinity of the optimal point
and the active constraints are quickly identified and hence a
high computational efficiency is achieved [22]. An evidence-
theory-based multidisciplinary design optimization method was
proposed for structures with epistemic uncertainty through a
sequential approximate strategy [23]. Based on combined prob-
ability and evidence theory, a reliability-based multidisciplinary
design optimization approach was proposed for the mixed
aleatory and epistemic uncertainties [24].

Though some important progresses were achieved above, evidence
theory was barely used in practical engineering applications. Onemain
reason is the high computational cost [25]. In evidence-theory-based
reliability analysis, the uncertainty is propagated through a discrete
probability assignment due to limited information, which is generally
described by a series of discontinuous sets rather than an explicit
continuous function like the probability density function in probability
theory. Thus, time-consuming uncertainty analyses are required
among each set for the assessment of its contribution to the reliability,
which will inevitably result in expensive computational cost for a
multidimensional problemwhen using evidence theory to conduct the
reliability analysis. Aiming at this issue, several numerical methods
[25–27] have been proposed to improve the computational efficiency,
mainly by introducing the response surface technique. However, the
precision of these methods is not usually stable since the response
surface is influenced by many factors such as the selection of sampling
techniques and approximation model types, and so on. As discussed
above, actually a close relationship exists between evidence theory
and probability theory, and that is why in many cases evidence theory
is also called “imprecise probability”. It then seems natural and also
reasonable that some important concepts or well-established techni-
ques in traditional probabilistic reliability analysis could be introduced
into the evidence-theory-based reliability analysis, based on which a
series of effective reliability methods might be developed.

In this paper, the first and second order approximate reliability
methods are proposed for evidence theory, which can significantly
improve the computational efficiency of evidence-theory-based relia-
bility analysis. The remainder of this paper is organized as follows. The
conventional reliability analysis using evidence theory is introduced in
Section 2. The first order approximate reliability method (FARM) and
second order approximate reliability method (SARM) are formulated
in Section 3. Three numerical examples are investigated in Section 4.
Finally conclusions are summarized in Section 5.

2. Conventional reliability analysis using evidence theory

Consider the following reliability analysis problem:

g Xð Þ ¼ g0 ð1Þ
where X is a vector of n independent uncertain input parameters
and they are modeled by the evidence variables in this paper; gðXÞ
is the limit-state function which is usually used to describe the

safety or failure state of a structure; g0 denotes an allowable value
of the limit-state function. The safety region G for this problem is
defined as:

G¼ X g Xð ÞZg0
��� � ð2Þ

The conventional reliability analysis using evidence theory is
illustrated with the above simple example, which includes two
main steps: the construction of joint basic probability assignment
and the computation of reliability interval.

2.1. Construction of joint basic probability assignment

Evidence-theory-based reliability analysis starts by defining a
frame of discernment (FD) that is a set of mutually exclusive
elementary subsets for each evidence variable X, which is similar
to the sample space in probability theory. The FDs for all evidence
variables in a problem form the uncertainty domain. In this paper,
The FD is also denoted as X. All the possible values of the FD will
form a power set ΩðXÞ.

After defining the FD, the basic probability assignment (BPA)
that represents the degree of belief is assigned to each subset of
the FD power set based on the statistical data or the expert
experience. The BPA is assigned through a mapping function:
ΩðXÞ-½0;1� which should satisfy the following three axioms:

m Að ÞZ0 for any AAΩ Xð Þ ð3Þ

m ∅ð Þ ¼ 0 ð4Þ
X

AAΩ Xð Þ
m Að Þ ¼ 1 ð5Þ

where m Að Þ refers to the degree of belief that is assigned to the
subset A. In this paper, we assume that the subsets A are all closed
intervals. Each set AAΩðXÞ satisfying m Að Þ40 is called the focal
element. Sometimes the information available for a parameter
may come from different sources, thus, the evidence should be
aggregated by rules of combination [12,28,29].

Similar to the joint probability density function in probability
theory, the joint basic probability assignment should be con-
structed in evidence theory when multiple uncertain variables
are involved. Due to the independence among the parameters, the
joint basic probability assignment m can be obtained for an
n-dimensional problem as below:

mðAÞ ¼ ∏
n

i ¼ 1
miðAiÞ when AiAΩðXiÞ; i¼ 1;2; :::;n

0 otherwise

8><
>: ð6Þ

where Ai and ΩðXiÞ are the focal element and FD power set of the
parameter Xi, respectively, and A is the focal element of the
Cartesian Product Θ, which can be defined as follows:

Θ¼ΩðX1Þ �ΩðX2Þ⋯�ΩðXjÞ⋯�ΩðXnÞ
¼ fA¼ ½A1;A2;…;Ai;…;An�;AiAΩðXiÞ; i¼ 1;2;…;ng; 1r jrn

ð7Þ

2.2. Computation of reliability interval

It should be pointed out that evidence theory employs an
interval composed of the belief measure (Bel) and the plausibility
measure (Pl) to characterize uncertainty of the structural response,
rather than a single measure in probability theory.

Based on the obtained joint BPA and the given safety region,
the reliability interval [Bel(G), Pl(G)] of the safety event XAG for
the above example can be calculated as below:

BelðGÞ ¼
X
ADG

mðAÞ ð8Þ
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