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a b s t r a c t

This paper develops a numerical scheme for approximating solutions of stochastic dif-
ferential equations with Markovian switching under such conditions that allow drift
coefficients being locally one-sided Lipschitz continuous, and diffusion coefficients being
locally Lipschitz continuous. The strong convergence of the algorithm is proved. In addition,
under the assumption of polynomial growth rate of drift and global Lipschitz continuity, the
classical rate of convergence is also obtained. Some numerical examples are provided for
demonstration purpose.
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1. Introduction

This work focuses on numerical solutions for stochastic differential equations with regime switching. Our main effort is
devoted to obtaining convergence and rates of convergence of the numerical solutions under general conditions that allow
the drift and the diffusion coefficient being locally Lipschitz and the drift having polynomial growth.

Because of the needs in various real-world applications, regime-switching diffusions have drawnmuch attention in recent
years. Regime-switching diffusions, also known as hybrid switching diffusions, have two components. One of them is the
continuous state component as in the usual diffusions, and the other is a switching component represented by a pure jump
process. In such systems, continuous dynamics and discrete events coexist. The models have been used in such applications
as option pricing in finance [1], jump linear systems in automatic control [2], hierarchical decision making in production
planning [3], differential games with switching [4], estimation in hybrid systems [5], stock liquidation [6], and competitive
Lotka–Volterra models in random environments [7,8], among others.

Explicit solutions are almost impossible to obtain for such systems due to the nonlinearity and the random switching.
Thus, numerical solutions become vitally important. In the last decade, many results on numerical methods have been
obtained for stochastic differential equations with regime switching under various conditions. One of the first was the
paper [9] on the Euler–Maruyama scheme. In [10], the L1 and L2 convergence of Euler–Maruyama method for stochastic
differential equations with Markovian switching was obtained under certain non-Lipschitz conditions. Strong pathwise
convergence for weak Euler–Maruyama method for diffusions with Markovian switching was treated in [11]. Milstein-type
methodwas studied in [12].Weak convergence and strong convergence of the Euler–Maruyamamethods for jumpdiffusions
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with Markovian switching were both considered in [13]. Rates of convergence to invariant measures were obtained in [14].
Most of theworkmentioned above assumed the linear growth and Lipschitz conditions for the drift and diffusion coefficients.
Nevertheless, inmany applications, these assumptions are violated. As an example,wemention the following Lotka–Volterra
system.

Example 1.1. In environment modeling, the stochastic Lotka–Volterra ecosystem in a random environment is given by

dxi(t) = xi(t)
{[

ri(α(t)) −

n∑
j=1

aij(α(t))xj(t)
]
dt + σi(α(t))dBi(t)

}
, i = 1, 2, . . . , d, (1)

where α(·) is a Markov chain taking values in a finite state space M, B(·) = (B1(·), . . . , Bd(·))⊤ is a d-dimensional standard
Brownian motion, and ri(·), aij(·) and σi(·) are functions defined on M for i, j = 1, . . . , d. Without loss of generality, we
assume that the initial conditions x(0) andα(0) are non-randomand that theMarkov chainα(·) and the Brownianmotion B(·)
are independent. For i0 ∈ M, denote bi(i0) = ri(i0)− 1

2σ
2
i (i0) for i = 1, . . . , d, b(i0) = (b1(i0), . . . , bd(i0))⊤, A(i0) = (aij(i0))d×d,

and Σ(i0) = diag(σ1(i0), . . . , σd(i0)). Assume that bi(i0) > 0 for each i0 ∈ M and i = 1, . . . , d. Then b(i0), A(i0), and Σ(i0)
represent different growth rates, communitymatrices, and noise intensities in different external environments, respectively.
One can easily see that the drift coefficient in the system (1) does not satisfy the linear growth and the global Lipschitz
conditions.

It is widely recognized that systems grow faster than linear may cause problems in numerical approximation. When we
construct numerical algorithms, if we ignore the fast growth rate and naively put together a numerical algorithm, it may
perform poorly or fail to converge. In fact, in the later section, we provide examples in which the standard Euler method fails
to produce convergent iterates. Therefore, modifications are needed.

Inspired by the work [15] and [16], in this paper, we propose a tamed-Euler scheme for stochastic differential equations
with Markov switching to deal with the case of local Lipschitz drift coefficient having polynomial growth rate. Roughly, a
‘‘tamed’’ scheme is one that properly modifies the coefficients of the systems so as to confine the iterates in a reasonable
range. Thus a tamed algorithm can be viewed as one with ‘‘soft’’ constraints. The papers [15,16] concern the tamed-Euler
algorithm for stochastic differential equations without Markov switching. In our present paper, with a Markov switching
included, the original hybrid stochastic differential equations and the corresponding schemes become more complicated
since the continuous dynamics and discrete events coexist and are intertwined.

The rest of the paper is organized as follows. The next section formulates the problem and gives the assumptions needed.
Section 3 presents the numerical method and the convergence of the algorithm. Section 4 provides the proof of the auxiliary
estimates and the main results. Section 5 gives the simulation results. Section 6 provides further remarks. Finally, for
continuity of presentation, proofs of some technical lemmas are relegated in an Appendix at the end of the paper.

2. Formulation

Let (Ω,F, P) be a complete probability space. On this probability space, let B(t) be an Rd-valued standard Brownian
motion and {α(t), t ≥ 0} a continuous-time Markov chain taking values in the finite setM = {1, 2, . . . ,m0} with generator
Q =

(
qi0j0

)
i0,j0∈M satisfying qi0j0 ≥ 0 for i0, j0 ∈ M, i0 ̸= j0 and

∑
j0∈Mqi0j0 = 0 for each i0 ∈ M. For a fixed positive

number T , let B([0, T ]) and B(Rd) denote the Borel σ fields of [0, T ] and Rd, respectively. For each vector x ∈ Rd, let x⊤ and
|x| denote its transpose and its norm, respectively. Let X0 be a Rd-valued random variable satisfying E|X0|

q < ∞ for some
q > 0. For each t ≥ 0, denote Ft = σ

{
X0, α(s), B(s) : 0 ≤ s ≤ t

}
. Throughout the paper we assume that B(·), α(·), and X0 are

independent. In addition, we use C and CR to denote generic constants that may change from place to place.
Consider the following stochastic differential equation

dX(t) = b(t, X(t), α(t))dt + σ (t, X(t), α(t))dB(t), X(0) = X0, t ∈ [0, T ], (2)

where for each i0 ∈ M, b(·, ·, i0) : [0, T ] × Rd
→ Rd and σ (·, ·, i0) : [0, T ] × Rd

→ Rd×d are B([0, T ]) ⊗ B(Rd)-measurable
vector-valued functions. We pose the following assumptions.

(A1) There exists a constant K such that

x⊤b(t, x, i0) ∨ |σ (t, x, i0)|2 ≤ K (1 + |x|2)

for all t ∈ [0, T ], x ∈ Rd, and i0 ∈ M.
(A2) For every R > 0, there exists a constant KR > 0 such that

(x − y)⊤[b(t, x, i0) − b(t, y, i0)] ∨ |σ (t, x, i0) − σ (t, y, i0)|2 ≤ KR|x − y|2

for all t ∈ [0, T ], |x|, |y| ≤ R, and i0 ∈ M.
(A3) For every R ≥ 0, there exists a constant NR > 0 such that

sup
|x|≤R

|b(t, x, i0)| ≤ NR

for all t ∈ [0, T ] and i0 ∈ M.
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