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a b s t r a c t

This paper focuses on the problem of almost sure exponential stability and stochastic sta-
bilization of nonlinear stochastic differential systems with impulsive effects. The moment
stability analysis of impulsive stochastic differential systems has received considerable
attention. But relatively little is known about the almost sure exponential stability and
noise stabilization. In this paper, by using Lyapunov function, we shall not only establish
the general criteria on almost sure exponential stability for general nonlinear impulsive
stochastic differential systems but also discuss exact method to design a stochastic per-
turbation to stabilize a given unstable impulsive differential systems. The efficiency of the
proposed results is illustrated by a numerical example.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, impulsive stochastic differential systems (ISDSs), which are subject to both impulsive effects and stochastic
perturbations, have attracted considerable attention. As a result, many stability and stabilization results have been reported
(see [1–11] and the reference therein). However, the previous works are mostly dedicated to moment stability. The only
results on the almost sure exponential stability were established in [12–16] based on the assumption that the system is
pth moment exponentially stable. Moreover, noise was often viewed as a perturbation with destabilization impact on the
systems stability. In fact, there are several different concepts of stability in the literature on stochastic differential systems
such as asymptotic stability in probability, pth moment exponential stability, and almost sure exponential stability, etc. For
pth moment exponential stability, noise always plays a destabilizing role. That is, for an unstable system, there is no way to
stabilize it by usingnoises in the sense ofmoment stability. It iswell known that noise canbeused to stabilize a givenunstable
deterministic differential systems in the sense of almost surely stability. The pioneering work was due to Hasminskii, who
stabilized a two-dimensional linear system by using two white noise sources [17]. Following Hasminskii’s work, there is an
extensive literature concernedwith thenoise stabilization; see, for example, [18–30]. For deterministic impulsive differential
systems (IDSs), one question arises: can noise make an exponentially unstable IDS exponentially stable?

Our aim in this paper is to seek a positive answer to this question. To explain this feature clearly, let us consider a simple
linear scalar IDS{

ẏ(t) = ay(t), t ̸= k,
∆y(k) = (ck − 1)y(k−), k = 1, 2, . . . , (1)
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with initial value y(0) = y0 > 0, where a > 0, ck ⩾ e−a/2, ∆y(k) = y(k) − y(k−). The explicit solution to system (1) is

y(t) = y0eat
∏

0<k⩽t

ck, t ⩾ 0.

Hence

lim
t→∞

1
t
log(y(t)) = lim

t→∞

1
t
log(

∏
0<k⩽t

ck) + a ⩾
a
2

> 0,

that is, the solution tends to infinity exponentially. To stabilize system (1), we perturb it by noise{
dx(t) = ax(t)dt + σx(t)dw(t), t ̸= k,
∆x(k) = (ck − 1)x(k−), k = 1, 2, . . . , (2)

wherew(t) is a scalar Brownianmotion and σ >
√
2a represents the intensity of the noise. Given initial value x(0) = x0 > 0,

this system has explicit solution

x(t) = x0e(a−
σ2
2 )t+σw(t)

∏
0<k⩽t

ck, t ⩾ 0,

which yields immediately that

lim
t→∞

1
t
log(x(t)) = lim

t→∞

1
t
log(

∏
0<k⩽t

ck) + a −
σ 2

2

w.p.1 (with probability one). Let e−
a
2 ⩽ ck < e

σ2
4 −

a
2 . Then from the above inequality, one has

lim
t→∞

1
t
log(x(t)) ⩽ −(

σ 2

4
−

a
2
) w.p.1.

This shows that for any 0 < ε < σ2

4 −
a
2 , there exists a random variable Tε > 0 such that

x(t) ⩽ e−( σ2
4 −

a
2 −ε)t , t ⩾ Tε w.p.1,

i.e., almost all sample paths of the solution will tend to the equilibrium point x = 0 exponentially fast. This implies that the
perturbed system (2) becomes stable. In other words, the noise has almost surely stabilized the unstable system (1).

The main aim of this paper is to treat general nonlinear ISDSs. Suppose that we are given an unstable nonlinear IDS of the
form {

ẋ(t) = f (x(t)), t ̸= tk, t ⩾ t0
∆x(tk) = Ik(x(tk)), k ∈ N,

(3)

where f : Rn
→ Rn and Ik : Rn

→ Rn are Borel measurable functions. We aim to design a stochastic controller g(x(t))dw(t)
such that the solution of ISDS (4) becomes almost surely exponentially stable. That is, we need to choose an appropriately
function g such that the corresponding controlled system (4) will be almost surely exponentially stable.

This paper can be viewed as an extension of the works [17,21–24], which were concerned with almost sure exponential
stability of stochastic differential systems (SDSs) without impulses. Compared with the previous works, the main contri-
butions of this paper can be outlined as follows. First, impulsive effects are considered, which complicates the analysis.
Second, the mutual restraints between the impulsive strength, the impulsive time interval, as well as the intensity of noise
are derived. Third, the one-sided linear growth condition used in this paper is less conservative than that of the previous
works.

The rest of the paper is organized as follows. Section 2 begins with some notation and system description. Section 3
develops some preliminary results that will play a basic role in this paper. The problems of almost sure exponential stability
and stochastic stabilization by noise are discussed in Sections 4 and 5, respectively. An example is provided in Section 6, and
conclusions are drawn in Section 7.

2. Preliminaries

Throughout this paper, unless otherwise specified, we shall use the following notation. Let (Ω,F, {Ft}t⩾0,P) be a
complete probability space with a filtration {Ft}t⩾0 satisfying the usual conditions (i.e., it is right continuous and F0
contains all P-null sets). Denote by E[·] the expectation operator with respect to the probability measure. Let w(t) =

(w1(t), . . . , wm(t))T be anm-dimensional Brownianmotion defined on the probability space. LetN denote the set of positive
integers, Rn the n-dimensional real Euclidean space, Rn×m the space of n × m real matrices, and I the identity matrix of
appropriate dimension. For x ∈ Rn, |x| denotes the Euclidean norm. If A is a vector or matrix, its transpose is denoted by AT .
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