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a b s t r a c t

We develop a theory which allows making qualitative conclusions about the dynamics of
bothmonotone andnon-monotoneMoreau sweeping processes. Specifically,we first prove
that any sweeping processes with almost periodic monotone right-hand-sides admits a
globally exponentially stable almost periodic solution. And then we describe the extent to
which such a globally stable solution persists under non-monotone perturbations.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A perturbed Moreau sweeping process reads as

− ẋ(t) ∈ NC(t)(x(t)) + f (t, x(t)), (1)

where NC (x) is a so-called normal cone defined for closed convex C ∈ Rn as

NC (x) =

{
{ξ ∈ Rn

: ⟨ξ, c − x⟩ ≤ 0, for any c ∈ C} , if x ∈ C,
∅, if x /∈ C, (2)

and f : R×Rn
→ Rn (see [1–4]). The unboundedness of the right-hand-sides in (1) makes the classical theory of differential

inclusions (see e.g. [5,6]) inapplicable. And despite numerous applications in elastoplasticity (see e.g. [7,8]) (as well as
in problems of power converters [9] and crowd motion [10]), the theory of Moreau’s sweeping processes is still in its
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infancy. Fundamental results on the existence, uniqueness and dependence of solutions on the initial data are proposed
in Monteiro Marques [11, Ch. 3], Valadier [12], Castaing and Monteiro Marques [1], Adly–Le [13], Brogliato–Thibault [14],
Krejci–Roche [15], Paoli [16]. Dependence of solutions on parameters is covered in Bernicot–Venel [17] and Kamenskii–
Makarenkov [3]. The papers [1,3] also show the existence of T -periodic solutions for T -periodic in time (1). Optimal control
problems for sweeping process (1) and equivalent differential equations with hysteresis operator are addressed in Edmond–
Thibault [4], Adam–Outrata [18] (which also discusses applications to game theory), Brokate–Krejci [19]. Numerical schemes
to compute the solutions of (1) are discussed through most of the papers mentioned above.

Much less is known about the asymptotic behavior as t → ∞. The known results in this direction are due to Leine and
van de Wouw [20,21], Brogliato [22], and Brogliato–Heemels [23]. Applied to a time-independent sweeping process (1) the
statements of [20, Theorem 8.7] (or [21, Theorem 2]), [22, Lemma 2], and [23, Theorem 4.4] imply incremental stability (see
Definition 2.1) and global exponential stability of an equilibrium, provided that

⟨f (t, x1) − f (t, x2), x1 − x2⟩ ≥ α∥x1 − x2∥2, for some fixed α > 0 and for all t ∈ R, x1, x2 ∈ Rn. (3)

In particular, the results of [20–23] do not impose any Lipschitz regularity on x ↦→ f (t, x) and the derivative in (1) is a
differential measure, which is capable to deal with solutions x of bounded variation.

This paper is motivated by sweeping processes (1) coming frommodels of parallel networks of elastoplastic springs (see
e.g. Bastein et al. [7,8]), where the right-hand-sides are Lipschitz in all the variables. Here C(t) represents the mechanical
loading of the springs and f (t, x) stands for those forces which influence the masses of nodes. Time-periodically changing C
and f are most typical in laboratory experiments (see [7,24,25]). However, the different nature of t ↦→ C(t) and t ↦→ f (t, x)
makes it most reasonable to not rely on the existence of a common period when the two functions receive periodic
excitations, but rather to use a theory which is capable to deal with arbitrary different periods of t ↦→ C(t) and t ↦→ f (t, x).
The goal of this paper is to develop such a theory.

Specifically, by assuming that both t ↦→ C(t) and t ↦→ f (t, x) are almost periodic, we establish global exponential stability
of an almost periodic solution to a monotone sweeping process (14). The corresponding theory for differential equations is
available e.g. in Trubnikov–Perov [26] and Zhao [27], that found numerous applications in biology. Moreover, we show that
the almost periodic solution found preserves its stability under awide class of non-monotone perturbations, which is known
for differential inclusions with bounded right-hand-sides e.g. from Kloeden–Kozyakin [28] and Plotnikov [29].

The paper is organized as follows. Section 2 establishes (Theorem 2.1) the existence of solutions to (1) defined on the
entire R under the assumption that both t ↦→ C(t) and (t, x) ↦→ f (t, x) are globally Lipschitz functions, but without any
use of the monotonicity assumption (3). Note, that for any solution x(t) of (1), one has x(t) ∈ C(t), so any solution of (1)
is uniformly bounded in the domain of its definition, if C(t) is such. When the monotonicity assumption (3) holds, we have
(Theorem2.2) the uniqueness and global exponential stability of a solutiondefined on the entireR. This result does not follow
from [22,23], where the existence of an equilibrium is a consequence of the particular structure of the right-hand-sides.
When both C(t) and f (t, x) are constant in t , the existence of an equilibrium to (1) formally follows from [20,21] which could
transform into a solution on R when C(t) and f (t, x) are time-varying and globally bounded. We provide an independent
proof because the proofs of [20, Theorem 8.7] and [21, Lemma 2] rely on Yakubovich [30, Lemma 2]. In turn, [30, Lemma 2]
sends the reader to Budak [31, Theorem 2] for the most crucial step of the proof, which is compactness of a sequence {xk}∞k=1
of C0(R,Rn) solutions to (1) corresponding to a converging sequence of initial conditions. Even if one ignores verifying the
regularity assumption of Budak [31, Theorem 2], this theorem provides a convergent subsequence on a finite interval and
Yakubovich [30, Lemma 2] does not explain how the convergence gets extended to the entire R.

Under the assumption that both t ↦→ C(t) and t ↦→ f (t, x) are almost periodic functions and x ↦→ f (t, x) is monotone
in the sense of (3), Section 3 shows (Theorem 3.1) that the unique global solution found in Section 2 is almost periodic.
Here we follow the standard definitions (see e.g. Levitan–Zhikov [32, p. 1] or Vesely [33]) to introduce the concept of almost
periodicity for set-valued functions and for the respective Bochner’s theorem. The results of [32] and [33] are developed for
functionswith values in an arbitrary completemetric space andwe take advantage of the completeness of the space of convex
closed nonempty sets equipped with the Hausdorff metric (see e.g. Price [34]) to apply the concept of almost-periodicity
to sweeping processes. The overall strategy of Section 3 originates from the corresponding theory available for differential
equations (see e.g. Trubnikov–Perov [26]).

Section 4 considers a sweeping process (1) with a parameter ε under the assumption that the monotonicity condition (3)
holds for ε = ε0. When ε = ε0, the sweeping process has a unique solution x0 defined on R by Theorem 2.2. The result of
Section 4 (Theorems 4.1 and 4.3) proves that the solutions to the perturbed sweeping process with ε ̸= ε0 andwith an initial
condition xε(0) ∈ C(0) approach any given inflation of the solution x0 (as it is termed in Kloeden–Kozyakin [28]) when the
values of time become large and when ε approaches ε0. Section 4.3 specifies the findings of Section 4 for the case where
both t ↦→ C(t) and t ↦→ f (t, x, ε) are almost periodic in time, so that x0 is almost periodic as well. Instructive examples of
Section 4.4 illustrate the domains of applications of Theorems 4.1 and 4.3. Finally, Section 4.5 gives a brief outlook about the
potential role of Theorems 4.1 and 4.3 in the analysis of the dynamics of networks of elastoplastic springs that motivated
our study.

We note that condition (3) ensures that the sweeping process (1) is incrementally stable (see [20, Theorem 8.7],
[21, Lemma 2], or Theorem 2.2 below), which concept currently attracts an increasing attention in the switched systems
literature, see e.g. Lu–di Bernardo [35], Zamani–van de Wouw–Majumdar [36] and references therein. The source for
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