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a b s t r a c t

This paper addresses an Optimal Control Problem (OCP) for a robot that has to find and
collect a finite number of objects and move them to a depot in minimum time. The robot
has fourth-order dynamics that change instantaneously at any pick-up or drop-off of an
object. The objects are represented by point masses in a bounded two-dimensional space
that may contain unknown obstacles. The OCP is formulated assuming either a worst-
case positioning, or a uniform distribution of the objects (probabilistic case). Modeling the
robotic problem by a hybrid system facilitates an event-driven receding horizon solution
based on motion parameterization and gradient-based optimization. A comparison of
the proposed methods to two simple heuristic approaches in simulation suggests that
the event-driven approach offers significant advantages – a lower execution time (on
average) and the ability to handle obstacles – over the simple solutions, at the price of a
moderately increased computational effort. The methods are relevant for various robotic
applications, e.g. the motion control of mobile manipulators for home-care, search and
rescue, harvesting, manufacturing etc.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

One of the major challenges in autonomous robotic navigation is coping with uncertainties arising from limited a priori
knowledge of the environment. Acquiring necessary information and achieving the overall goal are complementary subtasks
that require adapting the motion of a robot during mission execution, typically accompanied by minimizing a performance
criterion. In this work we address an Optimal Control Problem (OCP) for a robot with fourth-order dynamics that has to
find, collect and move a finite number of objects to a designated spot in minimum time. The objects with a priori known
masses are located in a bounded two-dimensional space, where the robot is capable of localizing itself using a state-of-
the-art simultaneous localization and mapping (SLAM) system [1]. The challenging aspects of the problem at hand are
(at least) threefold. One of them arises due to the discontinuity of the value function denoting the overall completion
time, which makes it hard to obtain an explicit controller even for deterministic linear systems [2,3]. Fortunately, a wide
range of approximate solutions has been proposed, including approaches based on numerical continuation [4], value set
approximation [5],multi-parametric programming [6] etc. Another challenge follows from the requirement to collect a finite
number of objects and drop them at the depot with minimal overall cost, which represents an instance of the well-known
NP-hard Traveling Salesperson Problem (TSP) [7]. While similar Vehicle Routing Problems (VRPs) have been extensively
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addressed in Operations Research [8], a distinguishing feature of the addressed problem is the continuous dynamics of the
Salesperson (i.e. the robot) that change upon object pick-ups and drop-offs. While deterministic autonomously switching
dynamics can be handled efficiently, e.g., by two-stage optimization [9,10] or relaxation [11], the complexity of most
approaches for setups that involve uncertainties scales poorly with the problem size [12].

Further, optimal exploration of a limited space is an inherently difficult problem by itself. Minimizing the expected
time for detecting a target located on a real line with a known probability distribution by a searcher that can change
its motion direction instantaneously, has a bounded maximal velocity and starts at the origin, was originally addressed
in [13] and extended in [14]. Different versions of this problem have received considerable attention from several research
communities, e.g., as a ‘‘pursuit-evasion game’’ in game theory [15,16], as a ‘‘cow-path problem’’ in computer science [17]
or as a ‘‘coverage problem’’ in control [18,19], but its solution for a general probability distribution or a general geometry
of the region is, to a large extent, still an open question. Effective approaches for the related persistent monitoring problem
based on estimation [20], linear programming [21] or parametric optimization [22] have been also been proposed. OCPswith
uncertainties have also been addressed by certainty equivalent event-triggered [23], minimax [24] and sampling-based [25]
optimization schemes. While methods for Partially Observable Markov Decision Processes (POMDP’s) can also be applied,
e.g., [26,27], they typically become computationally infeasible for larger problem instances. Due to the aforementioned
aspects, the problem at hand has exponential complexity in the number of objects and for any chosen time and space
discretization. In this context, employing a discrete abstraction of the underlying continuous dynamics is often only
possible by introducing a hierarchical decomposition [28], or additional assumptions that simplify the implementation of
automatically synthesized hybrid controllers [29]. Alternatively, onemay resort to event-based receding horizon approaches
that have been shown to outperform other optimization methods under the presence of uncertainty, e.g., for the elevator
dispatching problem [30], multi-agent reward collection problems [31] or planning with temporal logic constraints [32].

Since the locations of the objects are the only source of uncertainty in the considered problem, the ultimate goal is a
tractable and scalable, albeit suboptimal, solution that avoids time discretization and requires re-computation only upon a
detection of an object. Analytical solutions have been derived for the OCP of a robot, which has to find, collect and move a
finite number of objects back to a depot in minimum time, but is allowed to move only along a line [33]. Since a direct
generalization of this result for higher dimensional position spaces was not possible, an event-driven receding horizon
approachwas proposed in [34], where the robotmoves along a fixed exploratory trajectory. In this paper, we address the OCP
by an event-driven receding horizon approach that allows for adjusting the shape of the exploratory trajectory online, which
is particularly useful under the presence of a priori unknownobstacles. Introducing a finite parameterization of themotion of
the robot enables the use of Infinitesimal Perturbation Analysis (IPA) [35] for solving the worst and probabilistic case OCPs
by an iterative optimization scheme only upon detecting previously undiscovered objects (or obstacles). Two additional
heuristic event-driven schemes are introduced for comparison. The first one is based on exploring the environment until all
objects are discovered, followed by an optimal pick-up and drop-off of all objects. The second one is based on enforcing a
pick-up of an object upon its detection, followed by an optimal exploration and drop-off of all currently carried objects until
all remaining ones are discovered, thus resembling the policy introduced in [36].

The remainder of the paper is organized as follows: in Section 2, we present the problem formulation. Section 3 starts
with a brief discussion on the performance index and introduces a lower bound for the cost-to-go, followed by the proposed
event-driven (Section 4) and the heuristic approaches (Section 5). The methods are then compared in a numerical example
(Section 6), followed by the conclusions in Section 7.

Notation. For a set S, |S| and 2S denote its cardinality and the set of all of its subsets (power set), respectively. For r ∈ R,
respectively, r ∈ Rn, |r| and ∥r∥ denote the absolute value and the Euclidean norm. In is an identity matrix with dimension n.
0m,n represents an m × n matrix with zero entries. For a vector of zeros or ones with length m, we write 0m or 1m, respectively.
R,R≥0,R>0 denote the sets of reals, non-negative reals and positive reals, respectively. We use the derivatives ẋ(t) =

dx(t)
dt ,

c ′(s, θ ) =
∂c(s,θ )
∂s and the gradient ∇θ c(s, θ ) =

[
∂c(s,θ )
∂θ1

, . . . ,
∂c(s,θ )
∂θn

]T
.

2. Problem formulation

Consider a mobile robot that has to find, collect and move a finite set of objects O = {o1, . . . , oL} located in a limited
position space Yg = [−ymax, ymax] × [−ymax, ymax] ⊂ R2 back to a designated known spot (depot) yd in minimum time.
Every object ol, l ∈ {1, . . . , L} is uniquely characterized by its position p(l) ∈ Yg , which is a priori unknown to the robot,
and its mass m(l)

∈ R≥0. The number of objects and their masses are assumed to be known. For simplicity, the absence of
obstacles in Yg and a single depot located at yd = 02 are assumed in the main part. Handling obstacles is revisited in the end
of Section 4.

The overall system is modeled by a hybrid automaton with continuous inputs [37], i.e., a 9-tupleH = {Q , X, F ,U, E, Inv,
G, R, Init}, where:

• Q is the finite set of discrete states;
• X ⊆ Rn is the continuous state set;
• U ⊆ Rm is the continuous input set;
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