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a b s t r a c t

In this work, a class ofmulti-module impulsive switched linear systems are formulated and
their stabilization and robustness issues are studied. A pathwise state-feedback impulsive
switching scheme is proposed and proven universal in sense that any asymptotically
stabilizable impulsive switched linear system admits such a mechanism steering the
system asymptotically stable. It is interesting to find that the designed scheme is flexible
in avoiding Zeno phenomena and accommodating perturbations. That motivates us to
conduct robustness analysis of the considered system under structural perturbations, un-
structural perturbations and impulsive switching signal perturbations. Finally, a numerical
example is provided to illustrate the effectiveness of the approach.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid dynamical systems exhibit the interaction of continuous-time dynamics and discrete-event dynamics and draw
increasing attention in biology, engineering and many other fields [1,2]. As one typical class of hybrid systems, switched
systems include a two-level structure with the lower lever governed by a set of modes and the upper level orchestrated by
the switching among themodes [3,4]. Impulse is another hybrid dynamic that models a systemwhose state is discontinuous
at some discrete instants [5,6]. As is known, switching and impulse widely exist in engineering, biology and many other
practical systems [7–11]. Switching and impulse are naturally combined to formamore comprehensivemodel, i.e., impulsive
switched systems. In [12], the authors derived some sufficient conditions for stability analysis and control synthesis of
switched impulsive nonlinear systems. A set of readily computable conditions in terms of linear matrix inequalities were
developed in [13] for exponential stability with the L2-gain condition of nonlinear impulsive switched systems. Exponential
stabilization problem was studied in [14] for a class of multi-module impulsive switched linear systems via a periodic
switching scheme. Some other relevant topics concerned with input-to-state stability and finite-time stability of impulsive
switched systems can be found in [8,15,16] and references therein.

Note that, for an autonomous impulsive switched system, a standard problem is the stabilization design that finds a
proper impulsive switching law steering the system asymptotically stable. Some classical stabilizing methods can be found
for switched linear systems, such as (average) dwell-time switching [17–21], state-space-partitioned switching [22–24] and
combined switching [25–27]. One can see a survey paper [28] for more related details. Moreover, a multiple discontinuous
Lyapunov function approach was proposed in [29] recently to reduce the dwell time. Note that conventional switching
law is usually purely time-driven or state-feedback. Time-driven switching law is not universal for the stabilization issue,
though it is well-defined as it is independent of the system dynamics. On the other hand, state-feedback switching law is
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robust with perturbations but usually cannot avoid Zeno behavior. In [30], the authors presented a pathwise state-feedback
switching scheme, which achieves the merits of both mixed time-driven method and state-feedback method. The priority
of the pathwise state-feedback scheme motivates our research to some extent. On the other hand, a universal method
addressing the stabilization problem for generic impulsive switched linear systems is still lost in existing work [12,31–33].
The discontinuous dynamics caused by impulse leads to the stabilization problem a more challenging topic. In general, it is
very hard to establish some necessary and sufficient stabilization criteria and construct proper impulsive switching laws for
the impulsive switched linear systems. Moreover, impulsive switching signal perturbation analysis of the proposed scheme
is also required, especially when time delay and measurement errors occur in practical systems. However, there are limited
results conducting this problem.

In this work, we mainly study the stabilization and robustness problems for a class of impulsive switched linear systems,
where the impulse inputs are subject to multi-module constraints [34]. The system framework is interesting in representing
a wide class of impulsive switched systems when only a finite set of impulse modules are available, such as the multi-
mode propulsion systems in flexible small satellite missions [35,36]. Such systems are designed to offer a range thrust and
total spacecraft velocity change options to meet specific mission objectives, e.g., orbit insertion, state-keeping and attitude
control. Motivated by the advantages of the pathwise state-feedback switching scheme introduced in [30], we extend it to
an impulsive switching mechanism for the considered impulsive switched systems. Under the proposed method, we prove
that any asymptotically stabilizable impulsive switched system admits such an impulsive switching control law that steers
the system asymptotically stable. In this work, it only requires the norm of state vector decreases along a sequence formed
by the starting instant of concatenated impulsive switching path, which is a relatively simple identifying way.

Further, we address robustness problem of nominal impulsive switched linear system under structural perturbations,
unstructural perturbations and impulsive switching signal perturbations. Note that, the cases when subsystems are against
structural and unstructural perturbations can be handled via conventional method while the case of impulsive switching
signal perturbations is a new topic that awaits more attention. The motivation of robustness against impulsive switching
signal perturbation is stated as below. In practice, we usually cannot implement an impulsive switching signal precisely due
to time delay and inexact online measure, and impulse/switching devices might not manipulate in certain cases [37]. From
the viewpoint of stabilizing design, we also prefer to an impulsive switching law that still works under small perturbations.
By defining the distance between perturbed and nominal impulsive switching path/signal through time variation and
ignoring the dynamic difference between the system matrices for simplicity, we prove that the proposed pathwise state-
feedback control law is robust against impulsive switching perturbations.

Themain contributions of this work can be stated as below. First, we propose a universal impulsive switching scheme and
establish a necessary and sufficient criteria for the multi-module impulsive switched systems, which greatly reducing con-
servatism of many existing results. Second, we conduct robustness analysis for the considered system under (un)structural
perturbations and especially impulsive switching signal perturbations. Third, we extend the results into [30,37,38] to amore
comprehensive model and increase more available degrees of freedom for stabilizing design.

2. Problem formulation and preliminaries

Consider a continuous-time impulsive switched linear system formed by{
ẋ(t) = Aσ x(t), t ̸= tk,

x(t+) = U(x(t−)), t = tk,
(1)

where x(t) ∈ Rn is the system state, σ : [0, +∞) → {1, 2, . . . , s} is the switching signal, {tk}∞k=1 is impulse/switching instant
sequence satisfying 0 < t1 < t2 < · · ·, and U(x) ∈ {B1x, B2x, . . . , Bmx} is the impulse input dependent on the state. We
suppose that the system state is continuous from the right hand.

Throughout this work, an impulsive switching path defined over a time interval [ts, tf ) is a sequence of triples as

p[ts,tf ) = {ts|(τ1, Al1 , Bj1 ), . . . , (τv, Alv , Bjv )},

where ts (tf ) is the starting (ending) time of the path, τq is the qth impulse/switching interval, Alq and Bjq are the activated
constituent subsystem and impulse mode respectively, q = 1, 2, . . . , v. We will omit ts in the brace when it is zero.

For an impulsive switching signal, it can be seen as an impulsive switching path defined over an infinite time horizon.
An impulsive switching control law for system (1) is a rule that generates an impulsive switching path/signal for certain
initial configurations. In this sense, an impulsive switching control law can be defined as {px : x ∈ Bδ}, where Bδ is the ball
centered at the origin with radius δ. An impulsive switching path/signal is said to be well defined if only a finite number of
impulse/switching occurs during any finite time interval.

For clarity, we denote φ(t; x0, p) by the state of system (1) at time t under impulsive switching path p and initial state
x(0) = x0; Φ(t, p) stands for the state transition matrix that corresponds to p with φ(t; x0, p) = Φ(t, p)x0; |·| is any given
vector norm in Rn, and ∥ · ∥ is the induced matrix norm; ρ(·) is the spectral radius of the matrix in Rn×n; ∅ symbols an empty
set; H1 = {x ∈ Rn

∥ x| = 1}; S1 − S2 stands for a set {s ∈ S1 : s ̸∈ S2} for any S1, S2 ⊂ Rn; S denotes the closure of a set
S ⊂ Rn; En denotes the n × n unit matrix. By a class K function α(q), q ≥ 0, we mean that it is a continuous and strictly
increasing function with α(0) = 0, and a class K∞ function is an unbounded class K function. A class KL function β(q, t)
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