
Software in military aviation and drone mishaps: Analysis and
recommendations for the investigation process

Veronica L. Foreman a, Francesca M. Favaró a, Joseph H. Saleh a,n, Christopher W. Johnson b

a School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA
b School of Computing Science, University of Glasgow, Scotland, UK

a r t i c l e i n f o

Article history:
Received 14 June 2014
Received in revised form
8 January 2015
Accepted 10 January 2015
Available online 19 January 2015

Keywords:
Military aviation
Mishap
Accident investigation
Software
Remotely Piloted Air Systems (RPAS)

a b s t r a c t

Software plays a central role in military systems. It is also an important factor in many recent incidents
and accidents. A safety gap is growing between our software-intensive technological capabilities and our
understanding of the ways they can fail or lead to accidents. Traditional forms of accident investigation
are poorly equipped to trace the sources of software failure, for instance software does not age in the
same way that hardware components fail over time. As such, it can be hard to trace the causes of
software failure or mechanisms by which it contributed to accidents back into the development and
procurement chain to address the deeper, systemic causes of potential accidents. To identify some of
these failure mechanisms, we examined the database of the Air Force Accident Investigation Board (AIB)
and analyzed mishaps in which software was involved. Although we have chosen to focus on military
aviation, many of the insights also apply to civil aviation. Our analysis led to several results and
recommendations. Some were specific and related for example to specific shortcomings in the testing
and validation of particular avionic subsystems. Others were broader in scope: for instance, we
challenged both the investigation process (aspects of) and the findings in several cases, and we provided
recommendations, technical and organizational, for improvements. We also identified important safety
blind spots in the investigations with respect to software, whose contribution to the escalation of the
adverse events was often neglected in the accident reports. These blind spots, we argued, constitute an
important missed learning opportunity for improving accident prevention, and it is especially
unfortunate at a time when Remotely Piloted Air Systems (RPAS) are being integrated into the National
Airspace. Our findings support the growing recognition that the traditional notion of software failure as
non-compliance with requirements is too limited to capture the diversity of roles that software plays in
military and civil aviation accidents. The identification of several specific mechanisms by which software
contributes to accidents can help populate a library of patterns and triggers of software contributions to
adverse events, a library which in turn can be used to help guide better software development, better
coding, and better testing to avoid or eliminate these particular patterns and triggers. Finally, we
strongly argue for the examination of software’s causal role in accident investigations, the inclusion of a
section on the subject in the accident reports, and the participation of software experts in accident
investigations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This work is at the intersection of three research areas: soft-
ware in safety-critical systems; aviation accidents; and military
aircraft mishaps, including Remotely Piloted Air Systems, hereafter
referred to as RPAS. Software has become pervasive and central to
the operation of many military systems [1]. By the same token,
software is playing an increasing role, albeit not well understood,

in system accidents. This is especially true in avionics where
software is a safety-critical element for flight operation and control,
either independently or in conjunction with the hardware (e.g.,
actuators, sensors) or liveware (e.g., human-in-the-loop).

There are significant limitations in our current understanding
of the role that software plays in accidents—for example, it can be
very difficult to identify the particular stage or activity in the
development lifecycle that led to a potential failure. This is
compounded by a lack of suitable methods for software testing
(with the purpose of capturing and eliminating these contribu-
tions before systems are fielded for operation). In addition, soft-
ware contributions are often neglected in accident investigation

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

http://dx.doi.org/10.1016/j.ress.2015.01.006
0951-8320/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: þ1 404 385 6711; fax: þ1 404 894 2760.
E-mail address: jsaleh@gatech.edu (J.H. Saleh).

Reliability Engineering and System Safety 137 (2015) 101–111

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2015.01.006
http://dx.doi.org/10.1016/j.ress.2015.01.006
http://dx.doi.org/10.1016/j.ress.2015.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2015.01.006&domain=pdf
mailto:jsaleh@gatech.edu
http://dx.doi.org/10.1016/j.ress.2015.01.006

reports even though it seems clear that code played a significant
role in the causes and contributory factors that led to an eventual
failure.

Why focus on military aviation accidents? Our motivation is
threefold:

(i) In the past five years (2008–2012), the United States (U.S.) Air
Force reported mishaps in aviation resulting in $5 billion in
lost equipment and injuries (excluding ground-related mis-
haps) and over 9000 lost workdays. In FY 2012, the Air Force
experienced 31 manned aircraft and RPAS Class A mishaps
(damages exceeding $2 million) [2]. These are significant
penalties, and any contribution for improvements in this area
can help save lives, preserve capabilities, and reduce costs
associated with these military aviation accidents.

(ii) Operational environment and flight parameters of military
aviation offer in some cases distinctive flight conditions that
can act as triggers of (deeply buried) software pathogens or
lurking software defects. As such, military aviation accidents
offer a unique learning opportunity, especially when soft-
ware is involved, to address software defects, which are
unlikely to be triggered under nominal operating condi-
tions, across the entire military fleet and with spillovers to
commercial aviation. It is surprising that safety research has
made very little use of the wealth of information and learning
opportunities military aviation accidents provide.

(iii) Our third motivation for focusing on military aircraft acci-
dents stems from the rapid introduction of military avionics
into civil operations. In particular, we are concerned with the
rapid integration of RPAS into the National Air Space. The U.S.
Air Force reported 33 RPAS mishaps in FY 2012, (11 Class A
resulting in damages exceeding $2million, 4 Class B with
damages exceeding $0.5 million, and 18 Class C with damages
exceeding $50,000) [2]. Ten RPAS vehicles were completely
destroyed and the total losses were estimated at $66 million.
The RPAS case studies examined in this work are intended to
contribute to the public debate about the integration of
drones in the National Air Space. In previous publications,
Johnson [3,4] examined several operational incidents with
RPAS and highlighted among other things the inadequate
reliability of the systems examined compared with that of
traditional air support. One important finding in these works
is the relationship between the decision to rush the deploy-
ment of RPAS and the higher technical and organizational
risks factors in operating them, which make mishaps much
more likely to occur. Other publications in this area are by
Tvaryanas [5] and Williams [6] who provided some statistical
results related to RPAS mishaps between 1997 and 2003, and
an examination of human factors in interface design for
remotely piloted aircraft.

To investigate the role of software contributions to military
aircraft accidents, we examined for this work the accident data-
base of the U.S. Air Force Accident Investigation Board (AIB). This
yielded more than three hundred and fifty incidents. An exhaus-
tive analysis helped to identify those in which software was clearly
involved. We have already argued that the role of software is often
neglected in many investigations, given that many investigators
lack a formal training in software engineering [7]. There may have
been other incidents where the role of software was not men-
tioned in the report even though it played some role in the causes
of a mishap. However, our aim here was to highlight both the
failure mechanisms and recurrent patterns of software failure,
identified using existing investigation techniques. We have argued
elsewhere [8] about the limitations of the notion of “software
failure” currently defined in various professional standards (e.g.,

IEEE), as it does not capture the diversity of software’s roles in
accidents—some of which do not involve a “failure.” We developed
in its stead the notion of software contribution to adverse events.
Later sections will expand on this notion.

The remainder of this work is organized as follows. In Section 2,
we provide background information on software contributions to
adverse events, the Air Force Accident Investigation Board, and the
methodology adopted in this work. In Section 3 we introduce the
case studies, and we analyze in detail each accident and the
contribution of software to the mishap. Section 4 concludes this
works with a brief synthesis and various recommendations.

2. Background and context

In this section we provide the context for our study. The
Accident Investigation Board is briefly discussed and a visualiza-
tion tool for representing accidents is introduced. This tool will be
used in Section 3 in conjunction with our case studies.

2.1. Beyond software failures

The analysis of software-related problems (and, by the same
token, software-related aviation accidents) involves the notions of
software failure and fault. A software failure represents the
inability of code “to perform its required function within specified
performance requirements”; while a software fault is an “incorrect
step, process, or data definition in a computer program” [9]. Some
variations on these definitions exist in the technical literature, but
it is generally the case that software failure is defined in terms of
non-compliance with requirements and the result of flawed
implementation of said requirements. Software fault is typically
causally subsumed under failure.

Leveson [10] challenged this notion of software failure as non-
compliance with requirements. Similarly, Knight [11] concluded,
“it is clear that we have difficulty stating exactly what software is
required to do, hence rendering the definition of software failure
ineffective.” In a previous work [8], we argued for a shift in
perspective, that software failure is not necessarily ill-defined,
but that the notion itself is too limited to capture the diversity of
ways in which software can contribute to accidents. We examined
several cases in which software complied with its requirements
yet directly contributed to or led to an accident. Such cases
would not fall under the traditional category of software
failure, yet they deserve careful attention by accident investi-
gators and researchers for the feedback they can provide to
software developers and testers and other stakeholders. These
cases emerged for different reasons, either because of missing or
flawed requirements – such as those not suited to the system’s
operational conditions at the time of the accident – or because of
unconsidered operational scenarios (which would cause off-
nominal and/or untested input values to the software).

In short, a growing number of authors [8,10,11] have argued
that the notion of software failure is narrow in scope. In its stead,
we adopt the expression of “software contributions to adverse
events” as a better way to frame these issues. Section 3 provides
specific examples and analyses of such contributions.

2.2. The Air Force Accident Investigation Board (AIB)

As mentioned, the case studies for this work are drawn from
the U.S. Air Force Accident Investigation Board (AIB) Class A
mishaps. Following an aviation mishap, the Air Force conducts
two separate investigations: the first is known as a “safety
investigation”, and it is conducted by the Safety Investigation
Board (SIB) with the objective to “prevent future mishaps [and]

V.L. Foreman et al. / Reliability Engineering and System Safety 137 (2015) 101–111102

Download English Version:

https://daneshyari.com/en/article/805530

Download Persian Version:

https://daneshyari.com/article/805530

Daneshyari.com

https://daneshyari.com/en/article/805530
https://daneshyari.com/article/805530
https://daneshyari.com

