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a b s t r a c t

Data-driven learning methods for predicting the evolution of the degradation processes affecting
equipment are becoming increasingly attractive in reliability and prognostics applications. Among these,
we consider here Support Vector Regression (SVR), which has provided promising results in various
applications. Nevertheless, the predictions provided by SVR are point estimates whereas in order to take
better informed decisions, an uncertainty assessment should be also carried out. For this, we apply
bootstrap to SVR so as to obtain confidence and prediction intervals, without having to make any
assumption about probability distributions and with good performance even when only a small data set
is available. The bootstrapped SVR is first verified on Monte Carlo experiments and then is applied to a
real case study concerning the prediction of degradation of a component from the offshore oil industry.
The results obtained indicate that the bootstrapped SVR is a promising tool for providing reliable point
and interval estimates, which can inform maintenance-related decisions on degrading components.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of equipment reliability measures is of great
importance in many industrial sectors, due to the fact that
equipment failures may lead to accidents and/or plant unavail-
abilities which can translate into costs and production losses [1].
For example, in the context of the oil industry, scale deposition
due to salt accumulation may prevent equipment from properly
actuating; this may cause the interruption of oil production
leading to significant economical losses. Then, the anticipation of
potential failures is very attractive because it can enable the
implementation of preventive maintenance actions so as to avoid
the failures and the associated undesired consequences, costs and
losses.

Failure anticipation can be sought by the observation of factors
that influence equipment reliability [2,3]. Coming back to the
example of scaling build-up in subsea oil well equipment, this
process is correlated to a set of explanatory variables, such as

reservoir temperature, pressure and water composition, that char-
acterize the subsea environment. These factors can be tracked to
predict the amount of scale that will be deposited in the future and
determine the time to next maintenance action for removing the
scale layer before it builds up to a level that makes the equipment
fail to perform its function [2].

Kinetic formulas have been introduced to predict scale forma-
tion by correlation of the relevant explanatory variables [4–6].
These deterministic mathematical formulae correlate the scale
output variable to the relevant explanatory input variables. Estab-
lishing and validating such formula requires a large number of
reliable data and is not easy in practice. Lifetime distributions and
stochastic processes are also used to model the failure behavior of
equipment [7], but generally require making simplifying assump-
tions rarely met in practice.

Another alternative is to use data-driven learning methods for
predicting the evolution of the degradation process affecting
the equipment. These methods do not require specific knowledge
on the functional relationship between the influential factors
(the explanatory variables) and the degradation variable of inter-
est. Among these methods, Support Vector Regression (SVR) has
provided promising results in reliability [8,9], economic [10,11],
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environmental [12,13], electrical [14,15] applications, among
others. The SVR learning (or training) phase involves the resolu-
tion of a convex quadratic optimization problem, for which the
Karush–Kuhn–Tucker (KKT) first order conditions are necessary
and sufficient for a global optimum [16]. Indeed, this is an
advantage of SVR over other learning techniques, such as artificial
neural networks (ANNs), which may be trapped into local optima
[17]. After the training step, in correspondence of a new observa-
tion of the input vector x, hence forth called xþ , the estimate ŷ þ
of the true mean response μY ðxþ Þ can be obtained via the adjusted
regression function (i.e. the estimator) [17,18].

In many applications, particularly reliability and failure predic-
tion ones, it is important to account for the variability of the
estimator and/or assess the uncertainty on the prediction of the
response variable Y þ . This means that besides point estimates,
confidence intervals for μY ðxþ Þ and/or prediction intervals for Y þ
need to be calculated [18,19].

Given that SVR does not require any hypothesis about the
distribution of the error term, the central limit theorem enables
the approximation of confidence and prediction intervals when
large data sets are available [20]. On the other hand, for small
numbers of data points (e.g. 100 or less), the intervals based on
bootstrap [21,22] tend to be more accurate, given that they do not
rely on asymptotic results but on the construction of the limit
distribution from the available data [20].

The main idea of bootstrap methods is to estimate probability
distributions for statistics of interest obtained from the available
data. For regression, bootstrap can be based on: (i) pairs, when the
observations from the available data set are sampled with replace-
ment; (ii) on residuals, when the residuals associated with a
regression model adjusted over the original sample are sampled

with replacement. They are widely used in (generalized) linear,
non-linear and nonparametric regression [23]. For example, in
linear regression, Cribari-Neto [24] and Cribari–Neto and Lima [25]
use bootstrapped hypothesis testing and intervals tailored to
account for heteroskedasticity with an estimator of the covariance
matrix that considers the effects of leverage points in the design
matrix. In nonparametric regression, Zio [26], Cadini et al. [27],
Secchi et al. [28] and Zio et al. [29] analyze by bootstrap the
uncertainty of ANN predictions of nuclear process parameters. In
the context of support vector machines, bootstrap approaches
have been mainly applied to classification problems [30,31].
Specifically for SVR, Lin and Weng [32] and Yang and Ong [33]
have proposed probabilistic outputs, but assuming a probability
distribution for the response variable.

De Brabanter et al. [20] develops approximate pointwise and
simultaneous intervals for Least Squares Support Vector Machines
(LS-SVM). The authors then compare the approximate intervals
with intervals obtained via bootstrap based on residuals (for
both homoskedastic and heteroskedastic errors). In the present
work, differently from [20], we also consider bootstrap based
on pairs, and the SVR procedure put forward involves Vapnik's
ε-insensitivity loss function [34] instead of quadratic errors as in
LS-SVM.

Lins et al. [35] present a comprehensive approach for variable
selection, parameter tuning and uncertainty analysis based on the
coupling of Particle Swarm Optimization (PSO), bootstrap methods
and SVR. They present an application example for the prediction of
Times Between Failures (TBFs) of onshore oil wells located in the
Northeast of Brazil. However, in [35], the authors do not validate
the combination of bootstrap with SVR for uncertainty character-
ization and quantification.

Acronyms

bag, bagging bootstrap aggregating
CI confidence interval
ANN artificial neural network
KKT Karush–Kuhn–Tucker
LHS latin hypercube sampling
MSE mean squared error
PE point estimate
PI prediction interval
PSO particle swarm optimization
RBF radial basis function
SVR support vector regression
TBF time between failures

Notation

B number of bootstrap samples
b linear coefficient, bootstrap sample index
C trade-off between machine capacity and training error
D training set
f ð�Þ regression function
f 00 model trained over original D
i1;…; iℓ indexes uniformly generated with replacement from

1;…;ℓ
Kð�Þ kernel function
ℓ number of training examples

l observation index
M number of bootstrap samples of prediction errors
m index of bootstrap sample of prediction errors
n number of test examples
T transpose operator
w vector of weights
x input variable
x input vector
Y response random variable
y response observation
ŷ estimate of the response variable
α significance level, Lagrange multiplier
αn Lagrange multiplier
δ prediction error
δ̂ prediction error estimate
ε tube width
ϵð�Þ random error
ϵ̂ residual
~ϵ re-centered residual
�ϵ ~ϵ modified by η
γ Gaussian RBF parameter
μY ð�Þ true mean response
ϕð�Þ mapping function
σ2ð�Þ variance
η Rademacher variable
ξ; ξn slack variables
0 subscript indicating optimality
þ new observation symbol
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