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a b s t r a c t

Control algorithms are developed for physical processes modeled as hybrid dynamical
systems (HDSs). In this framework, a HDS is a nonlinear switched system of ordinary
differential equations (ODEs) coupled with impulsive equations. Switching and impulsive
control is applied with two performance goals in mind: First, a high-frequency switching
control method is provided to drive a HDS state to the origin while only requiring the HDS
state intermittently. Attractivity of the origin is proved under a shell bisection algorithm;
a high-frequency switching control rule is designed for this purpose. Second, a state-
dependent switching control strategy is derived for when the transient behavior of the
HDS is of interest. Finite-time stabilization is guaranteed under a so-called minimum rule
algorithm; for each HDS mode, the state space is divided into different control regions and
a switching control rule is constructed to switch between controllers whenever a boundary
is reached. The theoretical tools used in this article include the Campbell–Baker–Hausdorff
formula, multiple Lyapunov functions, and average dwell-time conditions.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid dynamical systems (HDSs) have recently gained much research attention as they provide a natural modeling
framework for physical processes in many areas of engineering (see, e.g., [1–8] and the references therein). Practical exam-
ples can be found in robotics, mechanical systems, the automotive industry, air traffic control, intelligent vehicle/highway
systems, chaos generators, among others [7,9–11]. An HDSmodeled according to amixture of continuous/discrete dynamics
and logic-based switching, which is the focus in this article, usually arises in two contexts [4,9]: a physical process whose
governing dynamics change abruptly in time; and a dynamical system being stabilized via switching controllers. There are
a variety of reasons why switching control is desirable, or even required, over a continuous control strategy [1,7,9]: it may
not be possible to implement or even find a continuous control because of the problem’s nature, uncertainty in the model,
or sensor/actuator limitations; performance of the control strategy can be improved under switching control; and switching
control may be easier to develop or the only viable option (e.g., in stabilizing an unstable system in which no continuous
control exists). This serves as the main motivation for the present article which focuses on the design of switching control
algorithms for complex physical processes, modeled by HDSs, to achieve desired performance behaviors.

Switched systems can exhibit unintuitive stability behavior; a HDS composed entirely of stable modes can display insta-
bility while one composed entirely of unstable modes can demonstrate stability [1]. This latter observation motivates open-
loop high-frequency and closed-loop state-dependent switching control stabilization strategies. The open-loop switching
control scheme involves the construction of a high-frequency stabilizing switching rule, constructed a priori; the control
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strategy information (i.e., the switching control times and mode sequence) is preprogrammed into the data. The authors
Bacciotti and Mazzi [12] studied nonlinear switched systems and proved the existence of a solution to said open-loop
problem. Stabilization of nonlinear systems to a compact set using a time-dependent switching rule was considered by
Mancilla-Aguilar and Garcia in [13], and other such investigations can be found in, for example, [14–16]. On the other hand,
the closed-loop state-dependent switching approach, first developed by Wicks et al. [17] to stabilize an unstable linear
system via switching control, has been studied more extensively in the literature. The main idea is as follows: given an
unstable system and a set of feedback controllers (none of which succeed individually in stabilizing the system), the state
space is partitioned into different regions and an algorithm is devised in order to dictate a control switching rule for choosing
the active feedback controller in each such region. This line of research has been extended in a number of directions, such as
nonlinear switched systems [18], linear systems with time-delays [19], systems with distributed delays (see, e.g., [20–23]),
and state-dependent switching and impulsive control [24–26].

A significant portion of the current switched systems stability literature focuses on Lyapunov asymptotic stability, defined
over an infinite time horizon. However, in many practical applications in engineering fields related to systems and control
analysis, the behavior of the transient over a finite time horizon is of paramount importance; for example, in guaranteeing
that system states remain in a safe operating range and avoid violating safety operating conditions [27–29]. Finite-time
stability (sometimes called short-time stability) was first introduced and developed in [30,31] and can be stated as follows:
given a bound on the initial state, determine whether the state trajectory remains within a prescribed bound in a fixed
time horizon. Unfortunately, these early results were not practical from an analysis and control synthesis viewpoint [29].
Recently, the theory of linear matrix inequalities (LMIs) has been used to revisit the finite-time stability problem [32],
allowing for less conservative conditions under which finite-time stabilization can be achieved [29]. The authors Amato
et al. [29] proved finite-time stability of quadratic systems under prescribed bounds involving polytopes by using LMIs
and feasibility problems in convex optimization. Amato et al. [32] investigated finite-time boundedness of linear systems
subject to parametric uncertainties and exogenous disturbances. Finite-time stabilization of discrete-time systems subject
to disturbances was considered using LMIs by Amato and Ariola [33]. The authors Amato et al. [28] used LMIs to extend the
finite-time stabilization literature by using a dynamic output feedback controller (rather than a state feedback controller).
In [27], Du et al. presented sufficient conditions for finite-time stability of linear switched systems using LMIs, average
dwell-time notions, and multiple Lyapunov functions. Du et al. [34] analyzed finite-time boundedness and stabilization
of switched linear systems with disturbances using a state-dependent switching strategy and multiple Lyapunov functions.
Other investigations can be found in, for example, [35–37].

The objective of this paper is to develop control algorithms for a general nonlinear HDS. Motivated by the above
discussions, a major area of research of switched systems is thus extended by detailing how switching control and impulsive
control can be used together to successfully realize certain desired performances. In this formulation, hybrid systems are
studied which have independent switching rules: a logic-based rule driven by factors associated with the uncontrolled HDS
and a control rule designed according to an algorithm. First, an infinite time horizon problem is considered in which sensors
are available intermittently at the HDS switching times. A new method, called the exponential shell bisection algorithm,
is developed which explicitly constructs an open-loop high-frequency control switching rule for a HDS. This extension
of [12] may be viewed as a type of output feedback control (where the output is the full system state, but only available
intermittently at the HDS switching times). This algorithm ensures attractivity (local or global), which has applications in
synchronization problems (see, e.g., [38–41]). When the transient behavior of the physical system is of interest, a closed-
loop state-dependent switching algorithm is implemented which guarantees finite-time stabilization. The state-dependent
switching control work in the present article broadens the current works detailed above by showing finite-time stabilization
of a nonlinear HDS exhibiting average dwell-time condition via multiple Lyapunov functions (see, e.g., [1,42,43]). New
stability results are found for autonomous dwell-time switching and average dwell-time switching, extending the results
found in [10,44].

The rest of the article is organized as follows: in Section 2, the hybrid process control problem is outlined after some
preliminaries are given. A high-frequency hybrid control algorithm is presented and studied in Section 3. A finite time
horizon refinement of the problem is detailed in Section 4, where a finite-time stabilization algorithm is outlined using
state-dependent switching control. Examples are provided throughout to illustrate the theoretical results. Conclusions and
possible future work are given in Section 5.

2. Problem formulation

The following notations are used throughout this paper: Let R+ denote the set of nonnegative real numbers and Rn

denote the Euclidean space of n-dimensions (equipped with the Euclidean norm ∥ · ∥). Let Z denote the set of integers and
Z>0,Z≥0,Z≤0,Z<0 denote the set of positive, nonnegative, nonpositive, and negative integers, respectively. LetRn×m denote
the set of n×mmatrices equipped with the corresponding induced norm. Given a symmetric matrix Q ∈ Rn×n, let λmax(Q )
and λmin(Q ) denote its maximum and minimum eigenvalue, respectively. Let B(x, r) denote the open ball of radius r > 0
centered at x ∈ Rn. Given a set A ⊂ Rn, let cl(A) denote the closure of A and let ∂A denote the boundary ofA. Let δ(·) denote the
generalized Dirac delta function and let ⌈·⌉ denote the ceiling function. LetH(Rn,Rm) denote the space of analytic functions
mapping Rn to Rm (equipped with an appropriate norm so that it is a Banach space), and let Hr := H(Rn,Rn) denote the
space of analytic functions bounded on B(0, r) ⊂ Rn for some r > 0. Let C(Rn,Rm), and C1(Rn,Rm) denote the spaces of
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