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a b s t r a c t

This paper studies fault-tolerant synchronization for nonlinear switching systems with
time-varying delay using impulsive feedback control. Both faults and disturbances in the
drive system are taken into account. In order to deal with these faults, we adopt an in-
put–output fault model by which faults are regarded as outputs corresponding to inputs
that approach zero as time goes to infinity. Based on this principle, by using an observer-
based fault estimator with output feedback controllers and impulsive state feedback con-
trollers, we design a fault-tolerant synchronization scheme, by which the synchronization
can be eventually reached no matter whether there are faults, disturbances in the drive
system or not. The problem of design is formulated so as to find control gain matrices in
the controllers such that the trivial solution of the error system is globally attractive and
the L2 norm of the error between fault and its estimation is bounded by that of the vector
consisting of the fault input and disturbance. Several criteria for this problem are derived
in terms of linearmatrix inequalities. Finally, a hybrid Chua’s circuit is used to illustrate the
effectiveness of the proposed method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Synchronization has gained significant attention over the past couple of decades due to its important applications
in a variety of engineering and control fields, such as information processing [1,2], secure communication [3–5], and
fault-tolerant control [6]. In [1], Xie et al. introduced amixed (generalized plus identical) synchronization scheme that could
be applied to store and encode arbitrary signals. The adaptive synchronization problem of the drive-driven type chaotic
systems via a scalar transmitted signal was studied and the proposed method was employed in a secure communication
system [3]. In [6], a fault-tolerant scheme for master–slave synchronization of the Lur’e system, was proposed, by which the
synchronization could be achieved no matter whether there were faults occurring in the master system or not.

Switching systems, consisting of a family of subsystems and a switching law that determines which subsystem is active
during a certain time interval [7], have been used as an important framework for the purpose of synchronization in recent
years [8–11]. This is because, except for the importance of synchronization itself, switching systems play an essential role in
modeling many real-world systems with switchings such as biochemical processes, chemical processes, transportation and
communication systems [12–14]. And newly, a framework that modeled a class of cyber–physical switching vulnerabilities
in smart grid systems was presented in [15], in which the mathematical model was a switching system describing different
dynamical behaviors of the physical quantities of generator phase angle and frequency led by different loads. Similar to the
need of switchings in practice, time delay is also usually taken into consideration to make models closer to practical facts.
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For instance, in [16], the presence of transmission delay and sampling delay in chaos-based secure communication systems
by employing impulsive synchronization was studied. Michiels et al. [17] studied the stability of a linear system with a
point-wise time-varying delay, which was inspired by the existence of the time-varying delay representing the time taken
by the cutting inserts for one revolution of the workpiece when considering the dynamics of rotating cutting machines.

There have been a fewworks on the problem of synchronization for switching systemswith time delay via different con-
trol methods such as [8,9]. In [8], the synchronization of complex spatio-temporal switching network with time delays was
investigated based on passive control method. Adaptive control was employed in [9] to achieve the robust synchronization
for a class of delayed complex networks with switching topology. Except for these control methods, impulsive control, aris-
ing naturally in a wide variety of applications such as orbital transfer of satellite [18–20] and management of ecosystems
[21,22], also has attracted much attention in controlling switching systems, see [23,10,24,25]. Specifically, in [23,10], new
hybrid impulsive control strategies for nonlinear systemswere developed by usingmultiple Lyapunov functions; in [24], Shi
et al. investigated the hybrid impulsive control problem of switched singular systems aiming to compress their inconsistent
state jumps when switch occurs between two different singular subsystems; in [25], the problem of fault estimator design
for switched time-delay systems with impulsive control was investigated, using multiple Lyapunov–Krasovskii functionals.
However, except [25], few results have been proposed for impulsive control of switching systemswith time delay, especially
when faults and disturbances are taken into account.

In terms of practical significance, except for the effect of switching, delay and impulsive control, the influence of fault
and disturbance is also worthy of consideration, because the occurrence of a fault is always inevitable, for instance, the com-
ponent failure in a circuit and the unknown input in a control system caused by malfunctions in sensors or other unknown
reasons. In order for reliability of synchronization schemes, it is necessary to take faults and disturbances into considera-
tion, and to design schemes to be fault-tolerant. These years, there have been some results of fault-tolerant or fault-related
control such as [6,25–28]. The essence of fault-tolerant is to guarantee both stability and L2 norm bound constraint for error
system. In [25], authors considered the impulsive control for linear switched time-delay systems.

However, there is an issue in dealingwith the change of the value of themultiple Lyapunov–Krasovskii functional at each
impulsive instant, since the value of the functional changes due to the change of positivematrices contained in the functional
(see (35)–(37)) rather than remains unchanged as stated under (11) in [25]-‘‘Since V2,i(t, xt) and V3,i(t, xt) are defined in
terms of integrals which will remain continuous over tk’’. In fact, the difficulty goes far beyond this. In [26,27], authors
studied fault estimator design and fault detection filter design for switched nonlinear systems using Lyapunov–Krasovskii
functional, respectively. There is amuchmore serious problem to be further investigated in guaranteeing the L2 norm bound
constraint. To be exact, the average dwell time could not be directly substituted into the integral in (36) of [27]. Thus, the
constraint failed to be satisfied. To avoid the same problem of the L2 norm bound constraint, in some related areas such
as disturbance attenuation [29], L2 gain analysis [30] and H∞ model reduction [31], authors adopted a weighted norm-

∞

0 e−λtzT (t)z(t)dt . Unfortunately, this changed the original meaning of the L2 norm bound constraint. Therefore, it is a
technical challenge to prove the L2 norm bound constraint in fault-tolerant control of switching systems with time delay by
using the multiple Lyapunov–Krasovskii functional.

Motivated by the practical significance and the existing theoretical problems, we shall investigate the problem of fault-
tolerant synchronization for nonlinear switching systems with time-varying delay using impulsive feedback control. In
this paper, the change of the value of the Lyapunov–Krasovskii functional at each impulsive instant will be taken into
consideration (see (30)–(40)). Also, the challenge in dealing with the L2 norm bound constraint will be overcome by using
the relation between the switching number and the minimum dwell time, maximum dwell time (see (55)–(59)). Moreover,
we will consider some special cases (see the cases: 0 < µ < 1, in Theorem 3.1, Theorem 3.2, Corollaries 3.2 and 3.3) which
were overlooked before (only the case: µ ≤ 1, was considered in [27,29–31]).

The rest of this paper is organized as follows. In Section 2, we establish a fault-tolerant synchronization scheme for non-
linear switching systems with time-varying delay, explaining why this scheme is fault-tolerant, and formulate the problem
of fault-tolerant synchronization as to find control gain matrices such that the trivial solution of the error system is glob-
ally attractive and the L2 norm bound constraint, related to the synchronization errors, and fault input and disturbance, is
satisfied. In Section 3, main results for deriving these control gainmatrices are proposed and proven. In Section 4, the imple-
mentations of synchronization for a switching Chua’s circuit with time-varying delay in different cases are used to illustrate
the effectiveness of the proposed method. Finally, conclusion is given in Section 5.

2. Preliminaries and problem statement

Consider the following synchronization scheme using impulsive feedback control

D0 :

ẋ(t) = Aσ(t)x(t) + A1σ(t)x(t − τ(t)) + G1σ(t)g1(t, X(t))
y(t) = Cσ(t)x(t) + G2σ(t)g2(t, X(t))
xt0 = x(t0 + θ) = φ(θ), θ ∈ [−d, 0],

(1)

R0 :


˙̂x(t) = Aσ(t)x̂(t) + A1σ(t)x̂(t − τ(t)) + G1σ(t)g1(t, X̂(t)) + u(t)
ŷ(t) = Cσ(t)x̂(t) + G2σ(t)g2(t, X̂(t))
x̂t0 = x̂(t0 + θ) = ϕ(θ), θ ∈ [−d, 0],

(2)
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