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a b s t r a c t

We study computational questions related with the stability of discrete-time linear
switching systems with switching sequences constrained by an automaton.

We first present a decidable sufficient condition for their boundedness when the
maximal exponential growth rate equals one. The condition generalizes the notion of the
irreducibility of a matrix set, which is a well known sufficient condition for boundedness
in the arbitrary switching (i.e. unconstrained) case.

Second,we provide a polynomial time algorithm for deciding the dead-beat stability of a
system, i.e. that all trajectories vanish to the origin in finite time. The algorithm generalizes
one proposed by Gurvits for arbitrary switching systems, and is illustrated with a real-
world case study.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Switching systems are dynamical systems for which the state dynamics themselves vary between different operating
modes according to a switching sequence. The systems under study in this paper are discrete-time linear switching systems.
Given a set of N matricesM = {A1, . . . , AN} ⊂ Rn×n, the dynamics of a discrete-time linear switching system are given by

xt+1 = Aσ(t)xt ,

where x0 ∈ Rn is a given initial condition. The mode of the system at time t is σ(t) ∈ {1, . . . ,N}. The switching sequence
driving the system is the sequence of modes σ(0), σ (1), . . ., in time. Such systems are found in many practical and
theoretical domains. For example they appear in the study of networked control systems [1,2], in congestion control for
computer networks [3], in viral mitigation [4], as abstractions of more complex hybrid systems [5], and other fields (see
e.g. [6–8] and references therein).

A large research effort has been devoted to the study of the stability and stabilization of switching systems (see e.g.
[9,10,7,8,11,12]). The question of deciding the stability of a switching system is challenging and is known to be hard in
general (see [6], Section 2.2, for hardness results).

In this paper, we first develop a sufficient condition for the boundedness of switching systems, that is, the existence of a
uniform bound K ≥ 1 such that for all switching sequences and all time t ≥ 0,

∥Aσ(t) · · · Aσ(0)∥ ≤ K . (1)
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Fig. 1. Both automata on Fig. 1(a) and (b) accept arbitrary switching sequences on two modes. The third automaton (Fig. 1(c)) is on 4 modes. It does not
generate arbitrary switching sequences, mode 1 must be followed by mode 1 or 2, mode 2 by mode 3 or 4, etc.

Second, we provide an algorithm for deciding when a system is dead-beat stable. This corresponds to the fact that there
exists a time T ≥ 1 such that, for all switching sequences, and all t ≥ T , Aσ(t) · · · Aσ(0) = 0. Both problems have been
studied for arbitrary switching systems [13,6,14,15], for which the mode σ(t) can take any value in {1, . . . ,N} at any time.
To the best of our knowledge, these studies have yet to be extended to switching systems with more general switching
sequences, such as the ones studied in [16,10,4,17,11,9].

In thiswork,we allow for the definition of constraints on the switching sequences. These rules on the switching sequences
are expressed through an automaton. Automata are common tools for the representation of admissible sequences of symbols
(see [18], Section 1.3 for an introduction). An automaton is here represented as a strongly connected graph G(V , E), with a set
of nodes V and edges E. The edges of this graph are both directed and labeled. An edge takes the form (v, w, σ ) ∈ E, where v
and w are respectively the source and destination nodes of the edge, and σ ∈ {1, . . . ,N} is the label, taking its values in the
set of modes of the switching system.

The edges E represent the possible time transitions of a switching system, and the nodes V need not be inherently
associated with modes of the system. A switching sequence σ(1), σ (2), . . ., of the system is then said to be accepted by
G if there exists a path in G such that the sequence of labels along the edges of the path equals the switching sequence itself.
Examples of such automatons, with their corresponding switching rules, are presented in Fig. 1. Note that, in general, there
can be several automata that represent a same set of switching rules. Because it is not relevant to our purpose, we do not
specify an initial or final node for the paths—in this we differ from the classical definition of an automaton ([18], Section 1.3).

Given a graph G(V , E) on N labels and a set of N matrices M, we define the constrained switching system S(G,M) as the
following discrete-time linear switching system:

xt+1 = Aσ(t)xt , σ (0), . . . , σ (t) is accepted by G. (2)

Arbitrary switching systems are special cases of constrained switching systems. Their switching rule can be represented by
the automata alike those of Fig. 1(a) and (b), or by any path-complete graph (see [16]).

The boundedness and stability properties of a system S(G,M) are tightly linked to its constrained joint spectral radius.
This concept was introduced by X. Dai [19] in 2012 for the stability analysis of constrained switching systems. The CJSR of
the system S(G,M) is defined as follows:

ρ̂(S) = lim
t→∞

max
Aσ(t−1) · · · Aσ(0)

1/t : σ(0), . . . , σ (t − 1) is accepted by G

. (3)

When G allows for arbitrary switching, the CJSR is equal to the joint spectral radius (JSR) of the set M, which was introduced
by Rota and Strang in 1960 (see [6] for a monograph on the topic).

The constrained joint spectral radius is the maximal exponential growth rate of a system. Its value reflects the stability
properties of a system S(G,M). If ρ̂(S) < 1, the system is both asymptotically and exponentially stable (see [19]-
Corollary 2.8). If ρ̂(S) > 1, the system possesses an unbounded trajectory whose growth rate is exponential. The last
case ρ̂(S) = 1 is more complicated. The system is not asymptotically stable, but may be bounded or not depending on
its parameters.

If S is an arbitrary switching system with ρ̂(S) = 1, then there exists a condition guaranteeing its boundedness. This
condition is the irreducibility ofM.

Definition 1. A setM ⊂ Rn×n ofmatrices is irreducible if for any non-trivial linear subspaceX ⊂ Rn, i.e. with 0 < dim(X) <
n, there is amatrixA ∈ M such thatAX ⊄ X. That is, thematrices inM do not share a commonnon-trivial invariant subspace
of Rn.

Proposition 1.1 (e.g., [6], Theorem 2.1). If a set of matricesMwith joint spectral radius equal to 1 is irreducible, then the arbitrary
switching system on the set M is bounded.

The irreducibility property is known to be decidable (see [20] and references therein). Moreover, irreducibility implies
the existence of Barabanov norms for arbitrary switching systems. The existence of such norms is very useful for the stability
analysis of arbitrary switching systems [21,6,22].

The first part of this paper is focused around providing a proper generalization of both irreducibility and Proposition 1.1
for constrained switching systems.1 As shown in Example 1, Proposition 1.1 does not generalize directly to constrained
switching systems.

1 Preliminary results on this question were presented in the conference paper [23].
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