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a b s t r a c t

This paper is concerned with stochastic stability analysis and L∞-gain (also called L∞-
induced norm) controller design for positive Markov jump systems (MJSs) in continuous-
time context by means of a linear programming (LP) technique. Firstly, by introducing an
equivalent deterministic positive continuous-time linear system, we propose necessary
and sufficient conditions of stochastic stability with a prescribed L∞-gain performance in
LP form for the underlying system. Then based on the obtained results, an effectivemethod
for designing a desired L∞-gain controller is established. All the proposed conditions are
solvable in terms of LP with additional parameters. Finally, a numerical example is given
to illustrate the effectiveness of the present method.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In practice, physical systems involve variables that have nonnegative property, like the population of human, plants or
animals, concentration of substances, absolute temperature [1]. Such systems are referred to as positive systems, whose
states and outputs are nonnegative whenever the initial conditions and inputs are nonnegative [2,3]. Many applications
of positive systems can be found in practice, including engineering, economics, social science, ecology, biomedicine,
communications [4–6]. For positive systems, due to the special positivity constraint, it is sometimes more appropriate to
adopt L∞-gain or L1-gain rather than L2-gain as the system performance measure [7–9]. In addition, ∞-norm provides a
useful description for positive systems because it accounts for the maximal value of the quantities. As in compartment
systems, one may be interested in analyzing the maximal mass in a single compartment with certain amount of input
mass. For positive systems, one often applies the co-positive linear Lyapunov function rather than the traditional quadratic
Lyapunov function as a valid candidate to discuss the control synthesis because the former will yield less conservative
stability conditions [10], and the corresponding existence conditions are formulated in the Linear programming (LP) form
rather than the Linear matrix inequality (LMI) form. Although both the LP problem and the LMI problem can be solved by
efficient algorithms, the LP technique is simpler and possesses a numerical advantages than the LMI approach [11]. Thus it
is more efficient to adopt LP approach to deal with the control synthesis of positive systems [7,12–16].

On the other hand, it is widely known that the reaction of real-world systems to exogenous signals is always not
instantaneous and is affected by certain time delays, such as transportation systems and networked control systems [17].
Time delay frequently leads to instability and undesirable system performance. Recently, studies of positive time-delayed
systems have attracted more and more attention, such as stability and stabilization analysis [6,18], fault detection [19], and
finite-time control [20,21].
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Furthermore, dynamic systems subject to random abrupt variations can be modeled as Markov jump systems (MJSs),
such as networked control systems [22], manufacturing systems [23], and fault-detection systems [24]. Positive Markov
jump systems, as a special class of MJSs, provide a unified framework of mathematical modeling for many dynamic systems,
like network employing TCP in communication systems, competitive electricity markets faced with uncertainty variations,
the analysis of electricity price time series [25–28]. For a positive MJS, it is an area that is only beginning to be investigated,
and there is further room for investigation. It should be pointed out that the stabilization of positive MJSs would be full of
theoretical challenge, since one needs to consider not only the stability of subsystems as well as the closed-loop system
governed by a Markov chain, but also the constrained positivity of the system.

Recently, there have been a limited amount of results on positive MJSs [11,29,30]. To mention a few, [29] deals with
the stability analysis, as well as synthesis design for positive linear systems subject to random Markovian switching.
Sufficient conditions for stochastic stability of continuous-time or discrete-time positive MJSs [11] were proposed in LP
form. Necessary and sufficient conditions are given in [30] such that the discrete-time positive MJS is stochastically stable
with an L1-gain performance, which is the first paper to consider discrete-time positive MJSs with exogenous disturbance.
It is widely recognized that many previous results of positive MJSs only consider the case that the transition probability
is completely known [11,29], which may lead to some conservativeness. Moreover, to the best of our knowledge, most
of the aforementioned results on positive MJSs [11,29,30] are based on nominal system without taking time delay and
exogenous disturbance into account. As time delay and exogenous disturbance are frequently encountered in practice, it is
necessary and significant to further consider positive MJSs with those two kinds of phenomenons. When taking time delays
and exogenous disturbance into account, the problem of stability analysis and control synthesis becomesmore complicated
and challenging. However, until now, no relevant work on this kind of system has been published, which motivates our
investigation.

In this paper, we will consider the stochastic stability analysis and L∞-gain controller design for positive MJSs with time-
varying delays. The main contributions of this paper include: (1) Based on the stability result for the deterministic positive
linear systems with time-varying delays, a necessary and sufficient condition of stochastic stability is obtained for the first
time with regard to positive continuous-time MJSs with time-varying delays; (2) The exact computation of L∞-gain index
of a stochastically stable positive continuous-time MJS is firstly presented by introducing an corresponding ‘‘equivalent’’
deterministic positive continuous-time linear system, and a necessary and sufficient condition which guarantees that the
continuous-time MJS is stochastically internally stable as well as satisfies the prescribed performance index is given in LP
form. (3) By considering uncertainties in the systemmatrices and transition probabilities, some robust L∞-gain performance
analysis results are obtained for the underlying system; (4) A sufficient condition on the existence of a desired L∞-gain state
feedback controller is presented based on the previously obtained results;

The rest of this paper is organized as follows. Some preliminaries are given in Section 2. Section 3 analyzes the stochastic
stability, L∞-gain performance, and robust L∞-gain performance for positive continuous-time MJSs with time-varying
delays. The L∞-gain state feedback controller design problem is solved in Section 4. A numerical example is presented to
show the effectiveness and applicability of the theoretical results in Section 5. Section 6 concludes the paper.

Notations: Z and Z+ are the sets of nonnegative and positive integers, respectively. A ≽ 0(≼, ≻, ≺) means that all
entries of matrix A are nonnegative (nonpositive, positive, negative); A ≻ B(A ≽ B) means that A − B ≻ 0(A − B ≽ 0).
AT means the transpose of matrix A. R(R+) is the set of all real (positive real) numbers; Rn(Rn

+
) is n-dimensional real

(positive real) vector space; Rm×n is the set of all m × n-dimensional real matrices. In denotes the n-dimensional identity
matrix and 1n means the all-ones vector in Rn. [A]ij means the (i, j)-th entry of a matrix A and [x]i means the ith entry
of a vector x. diag(Ai) denotes the matrix formed with Ai in the diagonal and zero else, i = 1, 2, . . . ,N . E {·} means the
mathematical expectation of {·}. ∥·∥2 represents the Euclidean norm and is denoted by ∥x∥2 = (

n
i=1[x]

2
i )

1/2, where x ∈ Rn.
∥x∥∞ = max1≤i≤n |[x]i| is the ∞-norm of a vector x in Rn, ∥A∥∞ = max1≤i≤m

n
j=1

[A]ij
 is the ∞-norm of a matrix A in

Rm×n. ∥ν∥L∞ =


∞

t=0 E {∥ν(t)∥∞} dt is the L∞-norm of a stochastic signal ν(t), t ≥ 0, L∞ means the space of signal ν(t)
having finite L∞-norm, that is, L∞ =


ν(t), t ≥ 0| ∥ν∥L∞ < ∞


. L+

∞
= {ν(t)|ν(t) ∈ L∞, ν(t) ≽ 0, ∀t ≥ 0}. ⊗ denotes the

Kronecker product. All matrices are assumed to have compatible dimensions, if their dimensions are not explicitly stated.

2. Problem formulation and preliminaries

Given a probability space (Ξ , Υ , Θ), whereΞ ,Υ , andΘ represent, respectively, the sample space, the algebra of events,
and the probability measure, the following continuous-time MJS with time-varying delay is considered:

ΣMC :

ẋ(t) = A(rt)x(t) + Ad(rt)x(t − d(t)) + B(rt)w(t),
z(t) = C(rt)x(t) + Cd(rt)x(t − τ(t)) + D(rt)w(t),
x(t0 + θ) = ϕ(θ), θ = [−H, 0],

(1)

where x(t) ∈ Rn is the state, w(t) ∈ Rp, z(t) ∈ Rq are the disturbance input and controlled output, respectively, which
belong to L∞; the time delay are bounded, that is, 0 ≤ d ≤ d(t) ≤ d and 0 ≤ τ ≤ τ(t) ≤ τ ; H = max


d, τ


, ϕ(θ) is the

initial condition of the system; t0 = 0 is the initial instant.
The {rt , t ≥ 0} represents the jumping process and takes values in a finite set S = {1, 2, . . . ,N},N ∈ Z+. For continuous-

time systems, the jumping process is a continuous-time, discrete-state homogeneousMarkov process and has the transition
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