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a b s t r a c t

Discrete Event Systems (DES) theory and engineering aremainly driven by needs that arise
inmany different human-made systems (manufacturing, communications, logistics, work-
flowmanagement, traffic, etc.). With the accelerated increase in the complexity and size of
new technological constructions, the state explosion problem in DES analysis and synthesis
becomes more and more acute.

Two traditional conceptual and complementaryways of dealingwith the computational
complexities in the Petri nets (PN) framework are structure theory (that investigates the re-
lationship between the behavior of a net system and its structure) and fluid relaxations,
here leading to particular classes of hybrid systems. In the second case, the expected com-
putational gains for analysis and synthesis problems are usually achieved at the expense
of the fidelity or accuracy of the relaxed model. This invited overview will mainly focus on
the second strategy, nevertheless always interspersed with basic structural concepts and
methods. Using an example-driven approach, starting with a DES ‘‘view of the system’’,
the legitimization and improvement of fluidization process, the aggregation of local states
by symmetries and the decolorization of models will be briefly addressed, together with
reflections about the analysis of the new models obtained.

As the linearization of a continuous dynamical system, the fluidization of a DES is a
relaxation that has to be usedwith care, depending on the problemat hand. This abstraction
is here considered from two complementary perspectives: at logical and at performance
levels, both for untimed and timed PNs. On the one hand, the expressive power of timed
fluid PNs under infinite server semantics is such that the simulation of Turing machines is
possible. From a complementary perspective, the expression of modeling capabilities such
as non-monotonicities and bifurcations may also be revealed for steady-state behaviors.
Symmetries (more generally, lumping) seek to group together ‘‘equivalent’’ behaviors
and decolorization seeks to abstract identities, in order to create new collectivities of
processes and resources. The synergy between symmetry-decolorization state-aggregation
approaches and fluid relaxations is highlighted. In fact, the first approaches not only reduce
the state space, but also ‘‘produce’’ populations, thus proceed upgrading the applicability of
fluidization. Opening thewindow, related issues such as control, optimization, observation
or diagnosis are briefly pointed out. For conciseness, this work is limited to fully fluid (or
continuous) PN models and their relationships with the corresponding discrete systems.
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1. Introduction

The analysis and synthesis of Discrete Event ‘‘views’’ of dynamic Systems (DES), suffer from the state explosion problem. In
this work Petri Nets are used as themodeling framework for DES. They constitute a broad family of related formalisms espe-
cially suited to dealing with parallel and distributed evolutions, and whose behavior are characterized by synchronization
and sharing phenomena. All these formalisms enjoy somebasic relevant features, such as intuitive graphical representations,
and locality of the states and the state-changes. Among the consequences, ‘‘true concurrency’’ (basically, a non-interleaved
semantics) can be modeled, what results in temporal realism [1]. In untimed net models, the state variables derive from the
places (represented by circles), while their values are calledmarkings (usually visualized by dots inside the places); the global
state of a system is numerically quantified, usually expressed in a vector form; state evolutions are caused by events and are
depicted by objects named transitions (symbolized with rectangles or bars). The underlying logic in the dynamic behavior
of a Petri net system is of the consumption/production type, thus it is non-monotonous.

In the sequel it is assumed that the reader is aware of the most elementary concepts of Petri Nets, basically at the level of
Place/Transition nets (P/T -nets), by default simply called Petri Nets (PNs). For gentle introductions to the field, complementary
basic surveys are [2], [3], and [4]. The latter also discusses some fully fluid or continuous models (terms here considered to
be synonymous) and some partially fluid or hybrid models. Topics related to the Petri nets modeling paradigm are studied
in well over a hundred thousand papers and reports. A recent broad historical perspective on the field is provided in [5].

Continuous ‘‘relaxations’’ of DES are not new. They are derived as fluid limit cases of discrete ‘‘views’’ of systems (models)
when the populations become very large. In fluid PN models, the firing amount of all transitions (thus the marking of
all places) are relaxed to non-negative real quantities. Fluid representations are usually inferred from the ‘‘macroscopic’’
averaging of enormous amounts of ‘‘microscopic’’ discrete states and events. In this context, fluidization ofQueuing Networks
(QNs) already received attention more than four decades ago [6], and there is abundant literature on the topic. The
introduction of fluidization (or continuization) in the Petri net paradigm dates back to 1987 [7]. R. David explicitly states
(see [8, p. IX]) that the source of inspirationwas the fluidization ofmodels for the performance evaluation of production lines
(manufacturing domain). It is simply a coincidence that, at the same meeting in Zaragoza, working with the fundamental
or state-transition equation of the net system, was proposed the systematic use of linear programming techniques for
the structural analysis of Petri nets (see [9] for a more accessible version). In fact, this second approach can initially be
‘‘rephrased’’ as relaxing Integer Programming into Linear Programming in order to obtain: necessary or sufficient conditions
for qualitative properties (such as boundedness, deadlock-freeness, etc.); or bounds for quantitative ones (for example, of the
maximum number of tokens in a place in an untimed model; or of the throughput of a transition – the number of its firings
per time unit – in a timed model [10]).

With a certain flavor in systems engineering and automatic control, broad perspectives on continuous PNs are provided
in chapters 4 and 5 of book [8], in survey [11], and in Chapters 18, 19 and 20 of book [12]. Starting in 2005, the fluidization of
Process Algebras (PAs) has recently received a significant attention (for a global perspective, see [13]). With regard to some
relationships of fluid PNs and fluid PAs, see [14,15].

Several formalisms deal directly with fluid ‘‘views’’ of systems that occasionally can be ‘‘more naturally perceived’’ as
discrete (for example, predator–prey systems). Like Petri nets, Forrester Diagrams (FDs) [16] are bipartite and have their
roots in the very beginning of the 1960s. They are also expressively called Stock and Flow Diagrams (for their connections
with time continuous PNs, see [17,18]). Stochastic FlowModels (SFMs), provide alternative timed continuous ‘‘views’’ of DES,
where their use is recognized ‘‘for control and optimization of communication networks in which detailed discrete event
models become impractical’’ [19].

State-aggregation techniques (symmetry reduction, lumping or decolorization) will be very briefly mentioned as exam-
ples of complementary abstractions that can be performed. Some of these allow the evolution frommodels with individuals
to others with populations (i.e., to more compact formal representations in which emphasis is placed on the collective be-
havior). Population based modeling is especially useful for representing the dynamics of large-scale distributed systems,
most frequently consisting of a great number of independent-equally behaved components.

Once models with populations are available, fluidization can be performed and the legitimization of continuous approx-
imations such as Ordinary Differential Equations (ODEs) or Stochastic Differential Equations (SDEs) can be established. The
important point is that with this abstraction (or relaxation) the larger the population, the better the approximation usually
is, while the computational costs may decrease exponentially. Obviously, the relationship between the untimed and timed
properties of the DES model and the corresponding characteristics of their continuous approximations is a very important
issue, unfortunately not frequently addressed.1 In addition, the question of the expressive power of the formalisms obtained
will be briefly mentioned.

Introducing new thoughts, this essay is a broad overview of facts, possibilities and problems. Simple examples will help
to drive the task forward. In Section 2, two examples are used to present the easy to accept notion that with growing
populations the relative error due to fluidization diminishes in many practical cases. Fluid untimed (autonomous or
non-deterministic) and timed PN models are the subjects of Sections 3 and 4, respectively.

1 Forrester Diagrams and Stochastic Flow Models are timed and continuous formalisms. With PNs the relationships of discrete models and their
continuous relaxations can be analyzed. Moreover, PN systems may be untimed (i.e., fully non-deterministic) and timed.
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