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a b s t r a c t

In this paper, we study the existence of solutions for nonlinear measure driven equations
in Kurzweil integral setting. Firstly, some new results on Hausdorff measure of noncom-
pactness in the space of regulated functions are established. Then some existence criteria
of the measure system are provided by applying Hausdorff measure of noncompactness
and a corresponding fixed point theorem. The results in this paper improve and generalize
those well known in the literature. Finally, an example is given to illustrate our results.
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1. Introduction

In this paper, we consider the following nonlinear measure driven integral system:

x(t) = x0 + (HLS)
 t

0
f (s, x(s))dg(s), t ∈ J, (1)

where J = [0, a] with a > 0; the state variable x(·) takes values in a Banach space X; g : J → R is a nondecreasing
function continuous from the left; f : J × X → X; (HLS)


·

0 denotes the Henstock–Lebesgue–Stieltjes integral, a kind of
non-absolutely convergent integral as a special case of Kurzweil integral, which will be specified later. The system (1) can
be related to the following measure driven differential problem

dx(t) = f (t, x(t))dg(t), t ∈ J,
x(0) = x0,

(2)

where dx and dg denote the distributional derivatives of the solution and the function g , respectively [1,2]. However, it have
to be stated that the equivalence between the sets of solutions of the two problems is a delicate matter, which relies on the
chosen definition of solutions to (2) (see [1,2] and references therein).

Measure driven differential equations are also calledmeasure differential equations, which arise inmany areas of applied
mathematics such as nonsmooth mechanics, game theory etc. (see [3–7] and references therein). dg in (2) can be identified
with a Lebesgue–Stieltjes measure. Based on different g , measure differential equations cover some well-known cases.
When g is an absolutely continuous function, a step function, or the sum of an absolutely continuous function with a
step function, the system corresponds to ordinary differential equations, difference equations or impulsive differential
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equations respectively. Further, compared to usual impulsive systems (see [8–10]), measure differential equations, as
another approach to develop impulsive action in dynamic systems, admit the discontinuous paths thatmay exhibit infinitely
many discontinuities in a finite interval. This kind of important property makes measure differential equations can possibly
model some non-classical problems like the quantum effects and Zeno trajectories (see [11,12]).

Measure differential equations were investigated early by [13–16]. One can refer to the review paper [17] for a complete
introduction ofmeasure differential systems. Recently, Tvrdý [18] has introduced the so-called regulated functions and used
the Kurzweil–Stieltjes integral to study solutions in the class of regulated functions for general first-order linear systems of
equations with measures. The papers [19–22] investigated nonlinear measure functional differential equations by applying
the method of generalized ordinary differential equations. However, all these papers focused on measure equations in
Rn space. To the best of our knowledge, few literatures have been devoted to measure differential equations in infinite
dimensional spaces except [2,23]. By using Hausdorff measure of noncompactness, the paper [2] discussed the existence of
solutions for nonlinear measure driven system (1). Although some properties of Hausdorff measure of noncompactness in
the space of regulated functions were provided in [2], those properties are not intrinsic for the space of regulated functions
since the function g in the system was involved. Moreover, the proof was not in detail and questionable (see Theorem
5 in [2]). Under Lipschitz-type conditions, [19,20] studied the retarded version of nonlinear measure driven system by
transforming measure equations into generalized ordinary differential equations when X = Rn. In addition, the authors
in [23] investigated the existence of mild solutions for abstract semilinear measure driven system in Lebesgue integral
setting. In this paper, we first establish some useful properties of Hausdorff measure of noncompactness in the space
of regulated functions, which are different from those in [2]. Based on these properties and a corresponding fixed point
theorem, we get the distinct existence criteria from those in [2] for measure driven system (1). In addition, without any
assumptions of Lipschitz-type as those in [19,20], a similar analysis to the system (1) can lead to the existence result of
nonlinear measure retarded equations.

This paper is organized as follows. In Section 2, we recall some concepts and basic results about Henstock–
Lebesgue–Stieltjes integral together with regulated functions. And we establish some important properties of Hausdorff
measure of noncompactness on regulated functions, which will be used throughout this paper. Main results are provided in
Section 3. An example that illustrates our results is presented in Section 4. Finally, some conclusions are drawn in Section 5.

2. Preliminaries

In this section, we recall some concepts and basic results about Henstock–Lebesgue–Stieltjes integral aswell as regulated
functions. In addition, we establish some important properties of Hausdorff measure of noncompactness in the space of
regulated functions.

Let X be a Banach space with the norm ∥ · ∥ and J = [0, a] a closed interval of the real line. A function f : J → X is called
regulated on J , if the limits

lim
s→t−

f (s) = f (t−), t ∈ (0, a] and lim
s→t+

f (s) = f (t+), t ∈ [0, a)

exist and are finite (see [24,25]). The space of regulated functions f : J → X is denoted by G(J; X). It is well known that the
set of discontinuities of a regulated function is at most countable and that the space G(J; X) is a Banach space endowedwith
the norm ∥f ∥∞ = supt∈J ∥f (t)∥ (see [24]).

The finite sets d = {t0, t1, . . . , tm} of points in the closed interval J such that 0 = t0 < t1 < · · · < tm = a are called
partitions of J . Let δ > 0, we say that a partition of J is δ-fine, if for every i = 1, 2, . . . ,m, we have |ti − ti−1| < δ. Moreover,
we call a pair (τi, [ti−1, ti]) to be a tagged interval, where τi ∈ [ti−1, ti] is a tag of [ti−1, ti]. Consider a function δ : J → R+

(called a gauge on J). A tagged partition of the interval J with division points 0 = t0 < t1 < · · · < tm = a and tags
τi ∈ [ti−1, ti], i = 1, . . . ,m, is called δ-fine if [ti−1, ti] ⊂ (τi − δ(τi), τi + δ(τi)), i = 1, . . . ,m. For more details, the readers
can consult [26].

Definition 2.1 (See [2]). Let g : J → R. A function f : J → X is said to be Henstock–Lebesgue–Stieltjes integrable with
respect to (w.r.t. for short) g on J (shortly, HL-Stieltjes integrable) if there exists a function denoted by (HLS)

 .

0 : J → X
such that, for every ε > 0, there is a gauge δε on J with

m
i=1

f (ξi)(g(ti) − g(ti−1)) −


(HLS)

 ti

0
f (s)dg(s) − (HLS)

 ti−1

0
f (s)dg(s)

 < ε

for every δε-fine partition {([ti−1, ti], ξi) : i = 1, 2, . . . ,m} of J .

The HL-Stieltjes integrability is preserved on all sub-intervals of J . The function t → (HLS)
 t
0 f (s)dg(s) is called the

HL-Stieltjes primitive of f w.r.t. g on J (we refer to [18] or [26] for finite dimensional space X).

Proposition 2.2 (See [2]). Let g : J → R and f : J → X be HL-Stieltjes integrable w.r.t. g. If g is regulated, then so is the
primitive h : J → X, h(t) = (HLS)

 t
0 f (s)dg(s) and

h(t+) = h(t) + f (t)[g(t+) − g(t)], t ∈ [0, a),
h(t−) = h(t) − f (t)[g(t) − g(t−)], t ∈ (0, a].
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